These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29517490)

  • 1. Excitation of hybridized Dirac plasmon polaritons and transition radiation in multi-layer graphene traversed by a fast charged particle.
    Akbari K; Mišković ZL; Segui S; Gervasoni JL; Arista NR
    Nanotechnology; 2018 Jun; 29(22):225201. PubMed ID: 29517490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directional effects in plasmon excitation and transition radiation from an anisotropic 2D material induced by a fast charged particle.
    Akbari K; Mišković ZL
    Nanoscale; 2022 Mar; 14(13):5079-5093. PubMed ID: 35296875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional Dirac plasmon-polaritons in graphene, 3D topological insulator and hybrid systems.
    In C; Kim UJ; Choi H
    Light Sci Appl; 2022 Oct; 11(1):313. PubMed ID: 36302746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of terahertz radiation from graphene surface plasmon polaritons via surface acoustic wave.
    Jin S; Wang X; Han P; Sun W; Feng S; Ye J; Zhang C; Zhang Y
    Opt Express; 2019 Apr; 27(8):11137-11151. PubMed ID: 31052962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Holographic Nano-Imaging of Terahertz Dirac Plasmon Polaritons in Topological Insulator Antenna Resonators.
    Pistore V; Viti L; Schiattarella C; Wang Z; Law S; Mitrofanov O; Vitiello MS
    Small; 2024 May; 20(22):e2308116. PubMed ID: 38152928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive Terahertz Biosensors Based on Fano Resonance of a Graphene/Waveguide Hybrid Structure.
    Ruan B; Guo J; Wu L; Zhu J; You Q; Dai X; Xiang Y
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28825677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable infrared plasmonic devices using graphene/insulator stacks.
    Yan H; Li X; Chandra B; Tulevski G; Wu Y; Freitag M; Zhu W; Avouris P; Xia F
    Nat Nanotechnol; 2012 Apr; 7(5):330-4. PubMed ID: 22522668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conductivity models for electron energy loss spectroscopy of graphene in a scanning transmission electron microscope with high energy resolution.
    Lyon K; Mowbray DJ; Miskovic ZL
    Ultramicroscopy; 2020 Jul; 214():113012. PubMed ID: 32413682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of electron back action on photons in hybridizing double-layer graphene plasmons with localized photons.
    Huang D; Iurov A; Gumbs G
    J Phys Condens Matter; 2018 May; 30(20):204001. PubMed ID: 29616975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailoring far-infrared surface plasmon polaritons of a single-layer graphene using plasmon-phonon hybridization in graphene-LiF heterostructures.
    Hajian H; Serebryannikov AE; Ghobadi A; Demirag Y; Butun B; Vandenbosch GAE; Ozbay E
    Sci Rep; 2018 Sep; 8(1):13209. PubMed ID: 30181598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terahertz amplification and lasing by using transverse electric modes in a two-layer-graphene-dielectric waveguide structure with direct current.
    Moiseenko IM; Popov VV; Fateev DV
    J Phys Condens Matter; 2023 Apr; 35(25):. PubMed ID: 36963112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene Nano-Optics in the Terahertz Gap.
    Feres FH; Barcelos ID; Cadore AR; Wehmeier L; Nörenberg T; Mayer RA; Freitas RO; Eng LM; Kehr SC; Maia FCB
    Nano Lett; 2023 May; 23(9):3913-3920. PubMed ID: 37126430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terahertz Broadband Polarization Conversion for Transmitted Waves Based on Graphene Plasmon Resonances.
    Yu A; Yu D; Yang Z; Guo X; Ren Y; Zang X; Balakin AV; Shkurinov AP; Zhu Y
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33379402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Optimizing Effect of a Few-Layer Graphene's Top-Edge Structure during Field Electron Emission Observed by In Situ TEM.
    Tang S; Deng S; Zhao P; Zhan R; Chen J; Zhang Y
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16815-16821. PubMed ID: 32167275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Terahertz surface plasmons in optically pumped graphene structures.
    Dubinov AA; Aleshkin VY; Mitin V; Otsuji T; Ryzhii V
    J Phys Condens Matter; 2011 Apr; 23(14):145302. PubMed ID: 21441654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Terahertz radiation in graphene hyperbolic medium excited by an electric dipole.
    Feng X; Gong S; Zhong R; Zhao T; Hu M; Zhang C; Liu S
    Opt Lett; 2018 Mar; 43(5):1187-1190. PubMed ID: 29489812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating the elastic properties of few-layer graphene from the free-standing indentation response.
    Zhou L; Wang Y; Cao G
    J Phys Condens Matter; 2013 Nov; 25(47):475301. PubMed ID: 24166876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation.
    Jnawali G; Rao Y; Yan H; Heinz TF
    Nano Lett; 2013 Feb; 13(2):524-30. PubMed ID: 23330567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface plasmon-polaritons in graphene, embedded into medium with gain and losses.
    Zhernovnykova OA; Popova OV; Deynychenko GV; Deynichenko TI; Bludov YV
    J Phys Condens Matter; 2019 Nov; 31(46):465301. PubMed ID: 31374561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-space nanoimaging of THz polaritons in the topological insulator Bi
    Chen S; Bylinkin A; Wang Z; Schnell M; Chandan G; Li P; Nikitin AY; Law S; Hillenbrand R
    Nat Commun; 2022 Mar; 13(1):1374. PubMed ID: 35296642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.