These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 29517511)

  • 1. Implanted In-Body Tissue-Engineered Heart Valve Can Adapt the Histological Structure to the Environment.
    Takewa Y; Sumikura H; Kishimoto S; Naito N; Iizuka K; Akiyama D; Iwai R; Tatsumi E; Nakayama Y
    ASAIO J; 2018; 64(3):395-405. PubMed ID: 29517511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo evaluation of an in-body, tissue-engineered, completely autologous valved conduit (biovalve type VI) as an aortic valve in a goat model.
    Takewa Y; Yamanami M; Kishimoto Y; Arakawa M; Kanda K; Matsui Y; Oie T; Ishibashi-Ueda H; Tajikawa T; Ohba K; Yaku H; Taenaka Y; Tatsumi E; Nakayama Y
    J Artif Organs; 2013 Jun; 16(2):176-84. PubMed ID: 23254363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro hydrodynamic evaluation of a biovalve with stent (tubular leaflet type) for transcatheter pulmonary valve implantation.
    Sumikura H; Nakayama Y; Ohnuma K; Kishimoto S; Takewa Y; Tatsumi E
    J Artif Organs; 2015 Dec; 18(4):307-14. PubMed ID: 26141924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of self-expanding valved stents with autologous tubular leaflet tissues for transcatheter valve implantation.
    Funayama M; Sumikura H; Takewa Y; Tatsumi E; Nakayama Y
    J Artif Organs; 2015 Sep; 18(3):228-35. PubMed ID: 25672940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-body tissue-engineered aortic valve (Biovalve type VII) architecture based on 3D printer molding.
    Nakayama Y; Takewa Y; Sumikura H; Yamanami M; Matsui Y; Oie T; Kishimoto Y; Arakawa M; Ohmuma K; Tajikawa T; Kanda K; Tatsumi E
    J Biomed Mater Res B Appl Biomater; 2015 Jan; 103(1):1-11. PubMed ID: 24764308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-month outcomes of aortic valve reconstruction using collagenous membranes (biosheets) produced by in-body tissue architecture in a goat model: a preliminary study.
    Okamoto K; Umeno T; Shuto T; Wada T; Anai H; Nishida H; Nakayama Y; Miyamoto S
    BMC Cardiovasc Disord; 2021 Apr; 21(1):184. PubMed ID: 33858334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro evaluation of a novel autologous aortic valve (biovalve) with a pulsatile circulation circuit.
    Sumikura H; Nakayama Y; Ohnuma K; Takewa Y; Tatsumi E
    Artif Organs; 2014 Apr; 38(4):282-9. PubMed ID: 24237157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcatheter aortic valve implantation using anatomically oriented, marrow stromal cell-based, stented, tissue-engineered heart valves: technical considerations and implications for translational cell-based heart valve concepts.
    Emmert MY; Weber B; Behr L; Sammut S; Frauenfelder T; Wolint P; Scherman J; Bettex D; Grünenfelder J; Falk V; Hoerstrup SP
    Eur J Cardiothorac Surg; 2014 Jan; 45(1):61-8. PubMed ID: 23657551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of an autologous heart valve with a stent (stent-biovalve) using the stent eversion method.
    Mizuno T; Takewa Y; Sumikura H; Ohnuma K; Moriwaki T; Yamanami M; Oie T; Tatsumi E; Uechi M; Nakayama Y
    J Biomed Mater Res B Appl Biomater; 2014 Jul; 102(5):1038-45. PubMed ID: 24323669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a stent-biovalve with round-shaped leaflets: in vitro hydrodynamic evaluation for transcatheter pulmonary valve implantation (TPVI).
    Sumikura H; Nakayama Y; Ohnuma K; Takewa Y; Tatsumi E
    J Artif Organs; 2016 Dec; 19(4):357-363. PubMed ID: 27230085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ observation and enhancement of leaflet tissue formation in bioprosthetic "biovalve".
    Funayama M; Takewa Y; Oie T; Matsui Y; Tatsumi E; Nakayama Y
    J Artif Organs; 2015 Mar; 18(1):40-7. PubMed ID: 25370717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an in vivo tissue-engineered, autologous heart valve (the biovalve): preparation of a prototype model.
    Hayashida K; Kanda K; Yaku H; Ando J; Nakayama Y
    J Thorac Cardiovasc Surg; 2007 Jul; 134(1):152-9. PubMed ID: 17599501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trans-apical versus surgical implantation of autologous ovine tissue-engineered heart valves.
    Dijkman PE; Driessen-Mol A; de Heer LM; Kluin J; van Herwerden LA; Odermatt B; Baaijens FP; Hoerstrup SP
    J Heart Valve Dis; 2012 Sep; 21(5):670-8. PubMed ID: 23167234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an in vivo tissue-engineered valved conduit (type S biovalve) using a slitted mold.
    Funayama M; Furukoshi M; Moriwaki T; Nakayama Y
    J Artif Organs; 2015 Dec; 18(4):382-6. PubMed ID: 26233653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Successful implantation of autologous valved conduits with self-expanding stent (stent-biovalve) within the pulmonary artery in beagle dogs.
    Funayama M; Matsui Y; Tajikawa T; Sasagawa T; Saito Y; Sagishima S; Mizuno T; Mizuno M; Harada K; Uchida S; Shinoda A; Iwai R; Nakayama Y; Uechi M
    J Vet Cardiol; 2015 Mar; 17(1):54-61. PubMed ID: 25697493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel self-expandable, stent-based transcatheter pulmonic valve: a preclinical animal study.
    Kim GB; Lim HG; Kim YJ; Choi EY; Kwon BS; Jeong S
    Int J Cardiol; 2014 Apr; 173(1):74-9. PubMed ID: 24588954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First percutaneous implantation of a completely tissue-engineered self-expanding pulmonary heart valve prosthesis using a newly developed delivery system: a feasibility study in sheep.
    Spriestersbach H; Prudlo A; Bartosch M; Sanders B; Radtke T; Baaijens FP; Hoerstrup SP; Berger F; Schmitt B
    Cardiovasc Interv Ther; 2017 Jan; 32(1):36-47. PubMed ID: 27139179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sutureless aortic valve replacement using a novel autologous tissue heart valve with stent (stent biovalve): proof of concept.
    Kishimoto S; Takewa Y; Nakayama Y; Date K; Sumikura H; Moriwaki T; Nishimura M; Tatsumi E
    J Artif Organs; 2015 Jun; 18(2):185-90. PubMed ID: 25604149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a completely autologous valved conduit with the sinus of Valsalva using in-body tissue architecture technology: a pilot study in pulmonary valve replacement in a beagle model.
    Yamanami M; Yahata Y; Uechi M; Fujiwara M; Ishibashi-Ueda H; Kanda K; Watanabe T; Tajikawa T; Ohba K; Yaku H; Nakayama Y
    Circulation; 2010 Sep; 122(11 Suppl):S100-6. PubMed ID: 20837900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A completely autologous valved conduit prepared in the open form of trileaflets (type VI biovalve): mold design and valve function in vitro.
    Nakayama Y; Yahata Y; Yamanami M; Tajikawa T; Ohba K; Kanda K; Yaku H
    J Biomed Mater Res B Appl Biomater; 2011 Oct; 99(1):135-41. PubMed ID: 21714078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.