BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 29517783)

  • 1. Sensitive detection of formamidopyrimidine-DNA glycosylase activity based on target-induced self-primed rolling circle amplification and magnetic nanoprobes.
    Song J; Yin F; Li X; Dong N; Zhu Y; Shao Y; Chen B; Jiang W; Li CZ
    Analyst; 2018 Mar; 143(7):1593-1598. PubMed ID: 29517783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitive detection of T4 polynucleotide kinase activity based on multifunctional magnetic probes and polymerization nicking reactions mediated hyperbranched rolling circle amplification.
    Li X; Xu X; Song J; Xue Q; Li C; Jiang W
    Biosens Bioelectron; 2017 May; 91():631-636. PubMed ID: 28107744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of p53 DNA using commercially available personal glucose meters based on rolling circle amplification coupled with nicking enzyme signal amplification.
    Jia Y; Sun F; Na N; Ouyang J
    Anal Chim Acta; 2019 Jul; 1060():64-70. PubMed ID: 30902332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fishhook probe-based rolling circle amplification (FP-RCA) assay for efficient isolation and detection of microRNA without total RNA extraction.
    Lu W; Wang Y; Song S; Chen C; Yao B; Wang M
    Analyst; 2018 Oct; 143(20):5046-5053. PubMed ID: 30238116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free fluorescence detection of human 8-oxoguanine DNA glycosylase activity amplified by target-induced rolling circle amplification.
    Sun M; Chen X; Chen X; Zhou Q; Huang T; Li T; Xie B; Li C; Chen JX; Dai Z; Chen J
    Anal Chim Acta; 2024 Jan; 1287():342084. PubMed ID: 38182379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-primer and self-template recycle rolling circle amplification strategy for sensitive detection of uracil-DNA glycosylase activity.
    Zhang P; Wang L; Zhao H; Xu X; Jiang W
    Anal Chim Acta; 2018 Feb; 1001():119-124. PubMed ID: 29291794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel electrochemical biosensor for ultrasensitive and specific detection of DNA based on molecular beacon mediated circular strand displacement and rolling circle amplification.
    Cheng W; Zhang W; Yan Y; Shen B; Zhu D; Lei P; Ding S
    Biosens Bioelectron; 2014 Dec; 62():274-9. PubMed ID: 25022510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemiluminescent detection of DNA hybridization and single-nucleotide polymorphisms on a solid surface using target-primed rolling circle amplification.
    Li Z; Li W; Cheng Y; Hao L
    Analyst; 2008 Sep; 133(9):1164-8. PubMed ID: 18709189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time monitoring of mycobacterium genomic DNA with target-primed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor.
    Xiang Y; Zhu X; Huang Q; Zheng J; Fu W
    Biosens Bioelectron; 2015 Apr; 66():512-9. PubMed ID: 25500527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical detection of T4 polynucleotide kinase activity based on magnetic Fe
    Tao J; Liu Z; Zhu Z; Zhang Y; Wang H; Pang P; Yang C; Yang W
    Talanta; 2022 May; 241():123272. PubMed ID: 35121542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double-probe signal enhancing strategy for toxin aptasensing based on rolling circle amplification.
    Tong P; Zhao WW; Zhang L; Xu JJ; Chen HY
    Biosens Bioelectron; 2012 Mar; 33(1):146-51. PubMed ID: 22270050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Sensitive Detection of Uracil-DNA Glycosylase Activity Based on Self-Initiating Multiple Rolling Circle Amplification.
    Dong L; Zhang X; Li Y; E F; Zhang J; Cheng Y
    ACS Omega; 2019 Feb; 4(2):3881-3886. PubMed ID: 31459598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Target binding protection mediated rolling circle amplification for sensitive detection of transcription factors.
    Zhang K; Wang L; Zhao H; Jiang W
    Talanta; 2018 Mar; 179():331-336. PubMed ID: 29310240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triggered polycatenated DNA scaffolds for DNA sensors and aptasensors by a combination of rolling circle amplification and DNAzyme amplification.
    Bi S; Li L; Zhang S
    Anal Chem; 2010 Nov; 82(22):9447-54. PubMed ID: 20954711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target-catalyzed hairpin structure-mediated padlock cyclization for ultrasensitive rolling circle amplification.
    Song H; Yang Z; Jiang M; Zhang G; Gao Y; Shen Z; Wu ZS; Lou Y
    Talanta; 2019 Nov; 204():29-35. PubMed ID: 31357296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasingly branched rolling circle amplification for the cancer gene detection.
    Li H; Xu J; Wang Z; Wu ZS; Jia L
    Biosens Bioelectron; 2016 Dec; 86():1067-1073. PubMed ID: 27569300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of RNase H activity via real-time monitoring of target-triggered rolling circle amplification.
    Lee CY; Kang KS; Park KS; Park HG
    Mikrochim Acta; 2017 Dec; 185(1):53. PubMed ID: 29594533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target-triggered activation of rolling circle amplification for label-free and sensitive fluorescent uracil-DNA glycosylase activity detection and inhibition.
    Yang F; Li X; Li J; Xiang Y; Yuan R
    Talanta; 2019 Nov; 204():812-816. PubMed ID: 31357368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of microbead DNA handling with optomagnetic detection in rolling circle amplification assays.
    Minero GAS; Cangiano V; Garbarino F; Fock J; Hansen MF
    Mikrochim Acta; 2019 Jul; 186(8):528. PubMed ID: 31297615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Discovery of Rolling Circle Amplification and Rolling Circle Transcription.
    Mohsen MG; Kool ET
    Acc Chem Res; 2016 Nov; 49(11):2540-2550. PubMed ID: 27797171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.