These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 29517783)
1. Sensitive detection of formamidopyrimidine-DNA glycosylase activity based on target-induced self-primed rolling circle amplification and magnetic nanoprobes. Song J; Yin F; Li X; Dong N; Zhu Y; Shao Y; Chen B; Jiang W; Li CZ Analyst; 2018 Mar; 143(7):1593-1598. PubMed ID: 29517783 [TBL] [Abstract][Full Text] [Related]
2. Sensitive detection of T4 polynucleotide kinase activity based on multifunctional magnetic probes and polymerization nicking reactions mediated hyperbranched rolling circle amplification. Li X; Xu X; Song J; Xue Q; Li C; Jiang W Biosens Bioelectron; 2017 May; 91():631-636. PubMed ID: 28107744 [TBL] [Abstract][Full Text] [Related]
3. Detection of p53 DNA using commercially available personal glucose meters based on rolling circle amplification coupled with nicking enzyme signal amplification. Jia Y; Sun F; Na N; Ouyang J Anal Chim Acta; 2019 Jul; 1060():64-70. PubMed ID: 30902332 [TBL] [Abstract][Full Text] [Related]
4. A fishhook probe-based rolling circle amplification (FP-RCA) assay for efficient isolation and detection of microRNA without total RNA extraction. Lu W; Wang Y; Song S; Chen C; Yao B; Wang M Analyst; 2018 Oct; 143(20):5046-5053. PubMed ID: 30238116 [TBL] [Abstract][Full Text] [Related]
5. Label-free fluorescence detection of human 8-oxoguanine DNA glycosylase activity amplified by target-induced rolling circle amplification. Sun M; Chen X; Chen X; Zhou Q; Huang T; Li T; Xie B; Li C; Chen JX; Dai Z; Chen J Anal Chim Acta; 2024 Jan; 1287():342084. PubMed ID: 38182379 [TBL] [Abstract][Full Text] [Related]
6. Self-primer and self-template recycle rolling circle amplification strategy for sensitive detection of uracil-DNA glycosylase activity. Zhang P; Wang L; Zhao H; Xu X; Jiang W Anal Chim Acta; 2018 Feb; 1001():119-124. PubMed ID: 29291794 [TBL] [Abstract][Full Text] [Related]
7. A novel electrochemical biosensor for ultrasensitive and specific detection of DNA based on molecular beacon mediated circular strand displacement and rolling circle amplification. Cheng W; Zhang W; Yan Y; Shen B; Zhu D; Lei P; Ding S Biosens Bioelectron; 2014 Dec; 62():274-9. PubMed ID: 25022510 [TBL] [Abstract][Full Text] [Related]
8. Chemiluminescent detection of DNA hybridization and single-nucleotide polymorphisms on a solid surface using target-primed rolling circle amplification. Li Z; Li W; Cheng Y; Hao L Analyst; 2008 Sep; 133(9):1164-8. PubMed ID: 18709189 [TBL] [Abstract][Full Text] [Related]
9. Real-time monitoring of mycobacterium genomic DNA with target-primed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor. Xiang Y; Zhu X; Huang Q; Zheng J; Fu W Biosens Bioelectron; 2015 Apr; 66():512-9. PubMed ID: 25500527 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical detection of T4 polynucleotide kinase activity based on magnetic Fe Tao J; Liu Z; Zhu Z; Zhang Y; Wang H; Pang P; Yang C; Yang W Talanta; 2022 May; 241():123272. PubMed ID: 35121542 [TBL] [Abstract][Full Text] [Related]
11. Double-probe signal enhancing strategy for toxin aptasensing based on rolling circle amplification. Tong P; Zhao WW; Zhang L; Xu JJ; Chen HY Biosens Bioelectron; 2012 Mar; 33(1):146-51. PubMed ID: 22270050 [TBL] [Abstract][Full Text] [Related]
12. Highly Sensitive Detection of Uracil-DNA Glycosylase Activity Based on Self-Initiating Multiple Rolling Circle Amplification. Dong L; Zhang X; Li Y; E F; Zhang J; Cheng Y ACS Omega; 2019 Feb; 4(2):3881-3886. PubMed ID: 31459598 [TBL] [Abstract][Full Text] [Related]
13. Target binding protection mediated rolling circle amplification for sensitive detection of transcription factors. Zhang K; Wang L; Zhao H; Jiang W Talanta; 2018 Mar; 179():331-336. PubMed ID: 29310240 [TBL] [Abstract][Full Text] [Related]
14. Triggered polycatenated DNA scaffolds for DNA sensors and aptasensors by a combination of rolling circle amplification and DNAzyme amplification. Bi S; Li L; Zhang S Anal Chem; 2010 Nov; 82(22):9447-54. PubMed ID: 20954711 [TBL] [Abstract][Full Text] [Related]
15. Target-catalyzed hairpin structure-mediated padlock cyclization for ultrasensitive rolling circle amplification. Song H; Yang Z; Jiang M; Zhang G; Gao Y; Shen Z; Wu ZS; Lou Y Talanta; 2019 Nov; 204():29-35. PubMed ID: 31357296 [TBL] [Abstract][Full Text] [Related]
16. Increasingly branched rolling circle amplification for the cancer gene detection. Li H; Xu J; Wang Z; Wu ZS; Jia L Biosens Bioelectron; 2016 Dec; 86():1067-1073. PubMed ID: 27569300 [TBL] [Abstract][Full Text] [Related]
17. Determination of RNase H activity via real-time monitoring of target-triggered rolling circle amplification. Lee CY; Kang KS; Park KS; Park HG Mikrochim Acta; 2017 Dec; 185(1):53. PubMed ID: 29594533 [TBL] [Abstract][Full Text] [Related]
18. Target-triggered activation of rolling circle amplification for label-free and sensitive fluorescent uracil-DNA glycosylase activity detection and inhibition. Yang F; Li X; Li J; Xiang Y; Yuan R Talanta; 2019 Nov; 204():812-816. PubMed ID: 31357368 [TBL] [Abstract][Full Text] [Related]
19. Integration of microbead DNA handling with optomagnetic detection in rolling circle amplification assays. Minero GAS; Cangiano V; Garbarino F; Fock J; Hansen MF Mikrochim Acta; 2019 Jul; 186(8):528. PubMed ID: 31297615 [TBL] [Abstract][Full Text] [Related]
20. Sensitive fluorescent detection of DNA methyltransferase using nicking endonuclease-mediated multiple primers-like rolling circle amplification. Huang J; Li XY; Du YC; Zhang LN; Liu KK; Zhu LN; Kong DM Biosens Bioelectron; 2017 May; 91():417-423. PubMed ID: 28063390 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]