These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

664 related articles for article (PubMed ID: 29517901)

  • 21. 3D bioprinting of DPSCs with GelMA hydrogel of various concentrations for bone regeneration.
    Wang W; Zhu Y; Liu Y; Chen B; Li M; Yuan C; Wang P
    Tissue Cell; 2024 Jun; 88():102418. PubMed ID: 38776731
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A tunable gelatin-hyaluronan dialdehyde/methacryloyl gelatin interpenetrating polymer network hydrogel for additive tissue manufacturing.
    Anand R; Salar Amoli M; Huysecom AS; Amorim PA; Agten H; Geris L; Bloemen V
    Biomed Mater; 2022 Jun; 17(4):. PubMed ID: 35700719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting.
    Giuseppe MD; Law N; Webb B; A Macrae R; Liew LJ; Sercombe TB; Dilley RJ; Doyle BJ
    J Mech Behav Biomed Mater; 2018 Mar; 79():150-157. PubMed ID: 29304429
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Printability, Durability, Contractility and Vascular Network Formation in 3D Bioprinted Cardiac Endothelial Cells Using Alginate-Gelatin Hydrogels.
    Roche CD; Sharma P; Ashton AW; Jackson C; Xue M; Gentile C
    Front Bioeng Biotechnol; 2021; 9():636257. PubMed ID: 33748085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomaterial composition and stiffness as decisive properties of 3D bioprinted constructs for type II collagen stimulation.
    Martyniak K; Lokshina A; Cruz MA; Karimzadeh M; Kemp R; Kean TJ
    Acta Biomater; 2022 Oct; 152():221-234. PubMed ID: 36049623
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Printing GelMA bioinks: a strategy for building
    Fu Z; Hai N; Zhong Y; Sun W
    Biofabrication; 2024 Mar; 16(2):. PubMed ID: 38447206
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D bioprinting by reinforced bioink based on photocurable interpenetrating networks for cartilage tissue engineering.
    Shen J; Song W; Liu J; Peng X; Tan Z; Xu Y; Liu S; Ren L
    Int J Biol Macromol; 2024 Jan; 254(Pt 1):127671. PubMed ID: 37884244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Marine Biomaterial-Based Bioinks for Generating 3D Printed Tissue Constructs.
    Zhang X; Kim GJ; Kang MG; Lee JK; Seo JW; Do JT; Hong K; Cha JM; Shin SR; Bae H
    Mar Drugs; 2018 Dec; 16(12):. PubMed ID: 30518062
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell encapsulation in gelatin bioink impairs 3D bioprinting resolution.
    Schwartz R; Malpica M; Thompson GL; Miri AK
    J Mech Behav Biomed Mater; 2020 Mar; 103():103524. PubMed ID: 31785543
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glycerylphytate as an ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological features.
    Mora-Boza A; Włodarczyk-Biegun MK; Del Campo A; Vázquez-Lasa B; Román JS
    Biomater Sci; 2019 Dec; 8(1):506-516. PubMed ID: 31764919
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vascularized Bone-Mimetic Hydrogel Constructs by 3D Bioprinting to Promote Osteogenesis and Angiogenesis.
    Anada T; Pan CC; Stahl AM; Mori S; Fukuda J; Suzuki O; Yang Y
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30836606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional printing of cell-laden microporous constructs using blended bioinks.
    Somasekhar L; Huynh ND; Vecheck A; Kishore V; Bashur CA; Mitra K
    J Biomed Mater Res A; 2022 Mar; 110(3):535-546. PubMed ID: 34486214
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Infiltration from Suspension Systems Enables Effective Modulation of 3D Scaffold Properties in Suspension Bioprinting.
    Wang C; Honiball JR; Lin J; Xia X; Lau DSA; Chen B; Deng L; Lu WW
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):27575-27588. PubMed ID: 35674114
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.
    Bendtsen ST; Quinnell SP; Wei M
    J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D Bioprinting of Gelatin-Xanthan Gum Composite Hydrogels for Growth of Human Skin Cells.
    Piola B; Sabbatini M; Gino S; Invernizzi M; Renò F
    Int J Mol Sci; 2022 Jan; 23(1):. PubMed ID: 35008965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering.
    Contessi Negrini N; Celikkin N; Tarsini P; Farè S; Święszkowski W
    Biofabrication; 2020 Jan; 12(2):025001. PubMed ID: 31715587
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D Bioprinting of Highly Thixotropic Alginate/Methylcellulose Hydrogel with Strong Interface Bonding.
    Li H; Tan YJ; Leong KF; Li L
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):20086-20097. PubMed ID: 28530091
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GelMA-collagen blends enable drop-on-demand 3D printablility and promote angiogenesis.
    Stratesteffen H; Köpf M; Kreimendahl F; Blaeser A; Jockenhoevel S; Fischer H
    Biofabrication; 2017 Sep; 9(4):045002. PubMed ID: 28795951
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D-bioprinting of aortic valve interstitial cells: impact of hydrogel and printing parameters on cell viability.
    Immohr MB; Dos Santos Adrego F; Teichert HL; Schmidt V; Sugimura Y; Bauer S; Barth M; Lichtenberg A; Akhyari P
    Biomed Mater; 2022 Nov; 18(1):. PubMed ID: 36322974
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of 3D bioprinting of periodontal ligament cells.
    Thattaruparambil Raveendran N; Vaquette C; Meinert C; Samuel Ipe D; Ivanovski S
    Dent Mater; 2019 Dec; 35(12):1683-1694. PubMed ID: 31601443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.