These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 29517915)

  • 1. Polylactic Acid Nanopillar Array-Driven Osteogenic Differentiation of Human Adipose-Derived Stem Cells Determined by Pillar Diameter.
    Zhang S; Ma B; Liu F; Duan J; Wang S; Qiu J; Li D; Sang Y; Liu C; Liu D; Liu H
    Nano Lett; 2018 Apr; 18(4):2243-2253. PubMed ID: 29517915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential osteogenic potential of human adipose-derived stem cells co-cultured with human osteoblasts on polymeric microfiber scaffolds.
    Rozila I; Azari P; Munirah S; Wan Safwani WK; Gan SN; Nur Azurah AG; Jahendran J; Pingguan-Murphy B; Chua KH
    J Biomed Mater Res A; 2016 Feb; 104(2):377-87. PubMed ID: 26414782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering.
    Kao CT; Lin CC; Chen YW; Yeh CH; Fang HY; Shie MY
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():165-73. PubMed ID: 26249577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paper-based bioactive scaffolds for stem cell-mediated bone tissue engineering.
    Park HJ; Yu SJ; Yang K; Jin Y; Cho AN; Kim J; Lee B; Yang HS; Im SG; Cho SW
    Biomaterials; 2014 Dec; 35(37):9811-9823. PubMed ID: 25241158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage.
    Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Ramakrishna S
    Biomaterials; 2012 Jan; 33(3):846-55. PubMed ID: 22048006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular composition of GAG-collagen I multilayers affects remodeling of terminal layers and osteogenic differentiation of adipose-derived stem cells.
    Zhao M; Altankov G; Grabiec U; Bennett M; Salmeron-Sanchez M; Dehghani F; Groth T
    Acta Biomater; 2016 Sep; 41():86-99. PubMed ID: 27188244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape-fitting collagen-PLA composite promotes osteogenic differentiation of porcine adipose stem cells.
    Dewey MJ; Johnson EM; Weisgerber DW; Wheeler MB; Harley BAC
    J Mech Behav Biomed Mater; 2019 Jul; 95():21-33. PubMed ID: 30953806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue engineering of ureteral grafts by seeding urothelial differentiated hADSCs onto biodegradable ureteral scaffolds.
    Shi JG; Fu WJ; Wang XX; Xu YD; Li G; Hong BF; Wang Y; Du ZY; Zhang X
    J Biomed Mater Res A; 2012 Oct; 100(10):2612-22. PubMed ID: 22615210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular Calcium Modulates Chondrogenic and Osteogenic Differentiation of Human Adipose-Derived Stem Cells: A Novel Approach for Osteochondral Tissue Engineering Using a Single Stem Cell Source.
    Mellor LF; Mohiti-Asli M; Williams J; Kannan A; Dent MR; Guilak F; Loboa EG
    Tissue Eng Part A; 2015 Sep; 21(17-18):2323-33. PubMed ID: 26035347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled Nanoscale Topographies for Osteogenic Differentiation of Mesenchymal Stem Cells.
    Pedrosa CR; Arl D; Grysan P; Khan I; Durrieu S; Krishnamoorthy S; Durrieu MC
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8858-8866. PubMed ID: 30785254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mussel Adhesion-Inspired Reverse Transfection Platform Enhances Osteogenic Differentiation and Bone Formation of Human Adipose-Derived Stem Cells.
    Shin J; Cho JH; Jin Y; Yang K; Lee JS; Park HJ; Han HS; Lee J; Jeon H; Shin H; Cho SW
    Small; 2016 Dec; 12(45):6266-6278. PubMed ID: 27717233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation.
    Yao Q; Cosme JG; Xu T; Miszuk JM; Picciani PH; Fong H; Sun H
    Biomaterials; 2017 Jan; 115():115-127. PubMed ID: 27886552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of larger than cell diameter polylactic acid surface patterns on osteogenic differentiation of rat dental pulp stem cells.
    Alksne M; Simoliunas E; Kalvaityte M; Skliutas E; Rinkunaite I; Gendviliene I; Baltriukiene D; Rutkunas V; Bukelskiene V
    J Biomed Mater Res A; 2019 Jan; 107(1):174-186. PubMed ID: 30338633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional printed polycaprolactone-based scaffolds provide an advantageous environment for osteogenic differentiation of human adipose-derived stem cells.
    Rumiński S; Ostrowska B; Jaroszewicz J; Skirecki T; Włodarski K; Święszkowski W; Lewandowska-Szumieł M
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e473-e485. PubMed ID: 27599449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collagen-PCL sheath-core bicomponent electrospun scaffolds increase osteogenic differentiation and calcium accretion of human adipose-derived stem cells.
    Haslauer CM; Moghe AK; Osborne JA; Gupta BS; Loboa EG
    J Biomater Sci Polym Ed; 2011; 22(13):1695-712. PubMed ID: 20836922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation.
    Lv L; Liu Y; Zhang P; Zhang X; Liu J; Chen T; Su P; Li H; Zhou Y
    Biomaterials; 2015 Jan; 39():193-205. PubMed ID: 25468371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of endothelial differentiated adipose-derived stem cells on vascularity and osteogenesis in poly(D,L-lactide) scaffolds in vivo.
    Sahar DE; Walker JA; Wang HT; Stephenson SM; Shah AR; Krishnegowda NK; Wenke JC
    J Craniofac Surg; 2012 May; 23(3):913-8. PubMed ID: 22627404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic Cell-Scaffold Interface Constructed by Superparamagnetic IONP Enhanced Osteogenesis of Adipose-Derived Stem Cells.
    Chen H; Sun J; Wang Z; Zhou Y; Lou Z; Chen B; Wang P; Guo Z; Tang H; Ma J; Xia Y; Gu N; Zhang F
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44279-44289. PubMed ID: 30499649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteogenic differentiation potential of mesenchymal stem cells cultured on nanofibrous scaffold improved in the presence of pulsed electromagnetic field.
    Arjmand M; Ardeshirylajimi A; Maghsoudi H; Azadian E
    J Cell Physiol; 2018 Feb; 233(2):1061-1070. PubMed ID: 28419435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.