These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 29518073)

  • 1. Method for the simulation of blood platelet shape and its evolution during activation.
    Moskalensky AE; Yurkin MA; Muliukov AR; Litvinenko AL; Nekrasov VM; Chernyshev AV; Maltsev VP
    PLoS Comput Biol; 2018 Mar; 14(3):e1005899. PubMed ID: 29518073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor-driven marginal band coiling promotes cell shape change during platelet activation.
    Diagouraga B; Grichine A; Fertin A; Wang J; Khochbin S; Sadoul K
    J Cell Biol; 2014 Jan; 204(2):177-85. PubMed ID: 24421335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.
    AlMomani T; Udaykumar HS; Marshall JS; Chandran KB
    Ann Biomed Eng; 2008 Jun; 36(6):905-20. PubMed ID: 18330703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The platelet shape change: biophysical basis and physiological consequences.
    Moskalensky AE; Litvinenko AL
    Platelets; 2019; 30(5):543-548. PubMed ID: 30252574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms and implications of platelet discoid shape.
    Italiano JE; Bergmeier W; Tiwari S; Falet H; Hartwig JH; Hoffmeister KM; André P; Wagner DD; Shivdasani RA
    Blood; 2003 Jun; 101(12):4789-96. PubMed ID: 12586623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New explanations for old observations: marginal band coiling during platelet activation.
    Sadoul K
    J Thromb Haemost; 2015 Mar; 13(3):333-46. PubMed ID: 25510620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Balance of microtubule stiffness and cortical tension determines the size of blood cells with marginal band across species.
    Dmitrieff S; Alsina A; Mathur A; Nédélec FJ
    Proc Natl Acad Sci U S A; 2017 Apr; 114(17):4418-4423. PubMed ID: 28400519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence-free flow cytometry for measurement of shape index distribution of resting, partially activated, and fully activated platelets.
    Litvinenko AL; Moskalensky AE; Karmadonova NA; Nekrasov VM; Strokotov DI; Konokhova AI; Yurkin MA; Pokushalov EA; Chernyshev AV; Maltsev VP
    Cytometry A; 2016 Nov; 89(11):1010-1016. PubMed ID: 27768824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood platelet quantification by light scattering: from morphology to activation.
    Litvinenko AL; Nekrasov VM; Strokotov DI; Moskalensky AE; Chernyshev AV; Shilova AN; Karpenko AA; Maltsev VP
    Anal Methods; 2021 Jul; 13(29):3233-3241. PubMed ID: 34184022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Platelet shape change and spreading.
    Aslan JE; Itakura A; Gertz JM; McCarty OJ
    Methods Mol Biol; 2012; 788():91-100. PubMed ID: 22130702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate measurement of volume and shape of resting and activated blood platelets from light scattering.
    Moskalensky AE; Yurkin MA; Konokhova AI; Strokotov DI; Nekrasov VM; Chernyshev AV; Tsvetovskaya GA; Chikova ED; Maltsev VP
    J Biomed Opt; 2013 Jan; 18(1):17001. PubMed ID: 23288415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization of microtubule growth in living platelets reveals a dynamic marginal band with multiple microtubules.
    Patel-Hett S; Richardson JL; Schulze H; Drabek K; Isaac NA; Hoffmeister K; Shivdasani RA; Bulinski JC; Galjart N; Hartwig JH; Italiano JE
    Blood; 2008 May; 111(9):4605-16. PubMed ID: 18230754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape transformation and cytoskeletal reorganization in activated non-mammalian thrombocytes.
    Lee KG; Miller T; Anastassov I; Cohen WD
    Cell Biol Int; 2004; 28(4):299-310. PubMed ID: 15109987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force field evolution during human blood platelet activation.
    Schwarz Henriques S; Sandmann R; Strate A; Köster S
    J Cell Sci; 2012 Aug; 125(Pt 16):3914-20. PubMed ID: 22582082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of platelet, thrombus and erythrocyte hydrodynamic interactions in a 3D arteriole with in vivo comparison.
    Wang W; Diacovo TG; Chen J; Freund JB; King MR
    PLoS One; 2013; 8(10):e76949. PubMed ID: 24098571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A phenomenological particle-based platelet model for simulating filopodia formation during early activation.
    Pothapragada S; Zhang P; Sheriff J; Livelli M; Slepian MJ; Deng Y; Bluestein D
    Int J Numer Method Biomed Eng; 2015 Mar; 31(3):e02702. PubMed ID: 25532469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractal and Euclidean descriptors of platelet shape.
    Kraus MJ; Neeb H; Strasser EF
    Platelets; 2014; 25(7):488-98. PubMed ID: 24224894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic effects and receptor interactions of platelets and their aggregates in linear shear flow.
    Tandon P; Diamond SL
    Biophys J; 1997 Nov; 73(5):2819-35. PubMed ID: 9370476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is primary haemostasis controlled by a 'platelet delay time'? Formulation of a new hypothesis.
    Kratzer MA
    Platelets; 2003; 14(7-8):437-43. PubMed ID: 14713513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microtubule coils versus the surface membrane cytoskeleton in maintenance and restoration of platelet discoid shape.
    White JG; Rao GH
    Am J Pathol; 1998 Feb; 152(2):597-609. PubMed ID: 9466587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.