These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
543 related articles for article (PubMed ID: 29518548)
1. Identification of 'Xinlimei' radish candidate genes associated with anthocyanin biosynthesis based on a transcriptome analysis. Sun Y; Wang J; Qiu Y; Liu T; Song J; Li X Gene; 2018 May; 657():81-91. PubMed ID: 29518548 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome analyses reveal key genes involved in skin color changes of 'Xinlimei' radish taproot. Liu T; Zhang Y; Zhang X; Sun Y; Wang H; Song J; Li X Plant Physiol Biochem; 2019 Jun; 139():528-539. PubMed ID: 31029026 [TBL] [Abstract][Full Text] [Related]
3. Identification of anthocyanin biosynthesis related microRNAs in a distinctive Chinese radish (Raphanus sativus L.) by high-throughput sequencing. Sun Y; Qiu Y; Duan M; Wang J; Zhang X; Wang H; Song J; Li X Mol Genet Genomics; 2017 Feb; 292(1):215-229. PubMed ID: 27817120 [TBL] [Abstract][Full Text] [Related]
4. De novo transcriptome sequencing of radish (Raphanus sativus L.) fleshy roots: analysis of major genes involved in the anthocyanin synthesis pathway. Gao J; Li WB; Liu HF; Chen FB BMC Mol Cell Biol; 2019 Oct; 20(1):45. PubMed ID: 31646986 [TBL] [Abstract][Full Text] [Related]
5. Identification of differential expression genes related to anthocyanin biosynthesis in carmine radish (Raphanus sativus L.) fleshy roots using comparative RNA-Seq method. Gao J; Li WB; Liu HF; Chen FB PLoS One; 2020; 15(4):e0231729. PubMed ID: 32330148 [TBL] [Abstract][Full Text] [Related]
6. De novo transcriptome analysis in radish (Raphanus sativus L.) and identification of critical genes involved in bolting and flowering. Nie S; Li C; Xu L; Wang Y; Huang D; Muleke EM; Sun X; Xie Y; Liu L BMC Genomics; 2016 May; 17():389. PubMed ID: 27216755 [TBL] [Abstract][Full Text] [Related]
7. Identification and differential expression analysis of anthocyanin biosynthetic genes in root-skin color variants of radish (Raphanus sativus L.). Yu R; Du X; Li J; Liu L; Hu C; Yan X; Xia Y; Xu H Genes Genomics; 2020 Apr; 42(4):413-424. PubMed ID: 31997158 [TBL] [Abstract][Full Text] [Related]
8. De novo transcriptome sequencing of radish (Raphanus sativus L.) and analysis of major genes involved in glucosinolate metabolism. Wang Y; Pan Y; Liu Z; Zhu X; Zhai L; Xu L; Yu R; Gong Y; Liu L BMC Genomics; 2013 Nov; 14(1):836. PubMed ID: 24279309 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to Lead (Pb) stress with next generation sequencing. Wang Y; Xu L; Chen Y; Shen H; Gong Y; Limera C; Liu L PLoS One; 2013; 8(6):e66539. PubMed ID: 23840502 [TBL] [Abstract][Full Text] [Related]
10. Identification of critical genes associated with lignin biosynthesis in radish (Raphanus sativus L.) by de novo transcriptome sequencing. Feng H; Xu L; Wang Y; Tang M; Zhu X; Zhang W; Sun X; Nie S; Muleke EM; Liu L Mol Genet Genomics; 2017 Oct; 292(5):1151-1163. PubMed ID: 28667404 [TBL] [Abstract][Full Text] [Related]
11. Anthocyanin accumulation and expression of anthocyanin biosynthetic genes in radish (Raphanus sativus). Park NI; Xu H; Li X; Jang IH; Park S; Ahn GH; Lim YP; Kim SJ; Park SU J Agric Food Chem; 2011 Jun; 59(11):6034-9. PubMed ID: 21548630 [TBL] [Abstract][Full Text] [Related]
12. Loss of the R2R3 MYB Transcription Factor RsMYB1 Shapes Anthocyanin Biosynthesis and Accumulation in Kim DH; Lee J; Rhee J; Lee JY; Lim SH Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681588 [TBL] [Abstract][Full Text] [Related]
13. Activation of anthocyanin biosynthesis by expression of the radish R2R3-MYB transcription factor gene RsMYB1. Lim SH; Song JH; Kim DH; Kim JK; Lee JY; Kim YM; Ha SH Plant Cell Rep; 2016 Mar; 35(3):641-53. PubMed ID: 26703384 [TBL] [Abstract][Full Text] [Related]
14. Comparative transcriptome analysis reveals transcriptional regulation of anthocyanin biosynthesis in purple radish (Raphanus sativus L.). Liu Y; Wang C; Chen H; Dai G; Cuimu Q; Shen W; Gao L; Zhu B; Gao C; Chen L; Chen D; Zhang X; Tan C BMC Genomics; 2024 Jun; 25(1):624. PubMed ID: 38902601 [TBL] [Abstract][Full Text] [Related]
15. Sequence and epigenetic variations of R2R3-MYB transcription factors determine the diversity of taproot skin and flesh colors in different cultivated types of radish (Raphanus sativus L.). Wang Q; Wang Y; Wu X; Shi W; Chen N; Pang Y; Zhang L Theor Appl Genet; 2024 May; 137(6):133. PubMed ID: 38753199 [TBL] [Abstract][Full Text] [Related]
16. Genome- and Transcriptome-Wide Characterization of Fan L; Xu L; Wang Y; Tang M; Liu L Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31888167 [TBL] [Abstract][Full Text] [Related]
17. Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in the red and yellow fruits of sweet cherry (Prunus avium L.). Wei H; Chen X; Zong X; Shu H; Gao D; Liu Q PLoS One; 2015; 10(3):e0121164. PubMed ID: 25799516 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome analysis of radish sprouts hypocotyls reveals the regulatory role of hydrogen-rich water in anthocyanin biosynthesis under UV-A. Zhang X; Su N; Jia L; Tian J; Li H; Huang L; Shen Z; Cui J BMC Plant Biol; 2018 Oct; 18(1):227. PubMed ID: 30305047 [TBL] [Abstract][Full Text] [Related]
19. Differential anthocyanin accumulation in radish taproot: importance of RsMYB1 gene structure. Lai B; Cheng Y; Liu H; Wang Q; Wang Q; Wang C; Su R; Chen F; Wang H; Du L Plant Cell Rep; 2020 Feb; 39(2):217-226. PubMed ID: 31728702 [TBL] [Abstract][Full Text] [Related]
20. Induction of Glucoraphasatin Biosynthesis Genes by MYB29 in Radish ( Kang JN; Won SY; Seo MS; Lee J; Lee SM; Kwon SJ; Kim JS Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32785002 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]