BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 29518568)

  • 21. Structural covariance across the lifespan: Brain development and aging through the lens of inter-network relationships.
    Aboud KS; Huo Y; Kang H; Ealey A; Resnick SM; Landman BA; Cutting LE
    Hum Brain Mapp; 2019 Jan; 40(1):125-136. PubMed ID: 30368995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphometric brain organization across the human lifespan reveals increased dispersion linked to cognitive performance.
    Li J; Zhang C; Meng Y; Yang S; Xia J; Chen H; Liao W
    PLoS Biol; 2024 Jun; 22(6):e3002647. PubMed ID: 38900742
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fitness, but not physical activity, is related to functional integrity of brain networks associated with aging.
    Voss MW; Weng TB; Burzynska AZ; Wong CN; Cooke GE; Clark R; Fanning J; Awick E; Gothe NP; Olson EA; McAuley E; Kramer AF
    Neuroimage; 2016 May; 131():113-25. PubMed ID: 26493108
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stability of sensorimotor network sculpts the dynamic repertoire of resting state over lifespan.
    Sastry NC; Roy D; Banerjee A
    Cereb Cortex; 2023 Feb; 33(4):1246-1262. PubMed ID: 35368068
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mapping cognitive and emotional networks in neurosurgical patients using resting-state functional magnetic resonance imaging.
    Catalino MP; Yao S; Green DL; Laws ER; Golby AJ; Tie Y
    Neurosurg Focus; 2020 Feb; 48(2):E9. PubMed ID: 32006946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resting-state fMRI can reliably map neural networks in children.
    Thomason ME; Dennis EL; Joshi AA; Joshi SH; Dinov ID; Chang C; Henry ML; Johnson RF; Thompson PM; Toga AW; Glover GH; Van Horn JD; Gotlib IH
    Neuroimage; 2011 Mar; 55(1):165-75. PubMed ID: 21134471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Network-specific effects of age and in-scanner subject motion: a resting-state fMRI study of 238 healthy adults.
    Mowinckel AM; Espeseth T; Westlye LT
    Neuroimage; 2012 Nov; 63(3):1364-73. PubMed ID: 22992492
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dispersion of functional gradients across the adult lifespan.
    Bethlehem RAI; Paquola C; Seidlitz J; Ronan L; Bernhardt B; Consortium CC; Tsvetanov KA
    Neuroimage; 2020 Nov; 222():117299. PubMed ID: 32828920
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Task- and stimulus-related cortical networks in language production: Exploring similarity of MEG- and fMRI-derived functional connectivity.
    Liljeström M; Stevenson C; Kujala J; Salmelin R
    Neuroimage; 2015 Oct; 120():75-87. PubMed ID: 26169324
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decreased inter-hemispheric interactions but increased intra-hemispheric integration during typical aging.
    Chen Q; Xia Y; Zhuang K; Wu X; Liu G; Qiu J
    Aging (Albany NY); 2019 Nov; 11(22):10100-10115. PubMed ID: 31761785
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional connectivity networks for preoperative brain mapping in neurosurgery.
    Hart MG; Price SJ; Suckling J
    J Neurosurg; 2017 Jun; 126(6):1941-1950. PubMed ID: 27564466
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phase fMRI informs whole-brain function connectivity balance across lifespan with connection-specific aging effects during the resting state.
    Chen Z; Zhou Q; Calhoun V
    Brain Struct Funct; 2019 May; 224(4):1489-1503. PubMed ID: 30826929
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trait- and State-Dependent Changes in Cortical-Subcortical Functional Networks Across the Adult Lifespan.
    Wang Z; Yang J; Zheng Z; Cao W; Dong L; Li H; Wen X; Luo C; Cai Q; Jian W; Yao D
    J Magn Reson Imaging; 2023 Sep; 58(3):720-731. PubMed ID: 36637029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Large-scale intrinsic connectivity is consistent across varying task demands.
    Kieliba P; Madugula S; Filippini N; Duff EP; Makin TR
    PLoS One; 2019; 14(4):e0213861. PubMed ID: 30970031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of rs-fMRI Pre-processing for Enhanced Signal-Noise Separation, Test-Retest Reliability, and Group Discrimination.
    Shirer WR; Jiang H; Price CM; Ng B; Greicius MD
    Neuroimage; 2015 Aug; 117():67-79. PubMed ID: 25987368
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Time-varying spectral power of resting-state fMRI networks reveal cross-frequency dependence in dynamic connectivity.
    Yaesoubi M; Miller RL; Calhoun VD
    PLoS One; 2017; 12(2):e0171647. PubMed ID: 28192457
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Model testing for distinctive functional connectivity gradients with resting-state fMRI data.
    O'Rawe JF; Ide JS; Leung HC
    Neuroimage; 2019 Jan; 185():102-110. PubMed ID: 30315909
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sex differences in normal age trajectories of functional brain networks.
    Scheinost D; Finn ES; Tokoglu F; Shen X; Papademetris X; Hampson M; Constable RT
    Hum Brain Mapp; 2015 Apr; 36(4):1524-35. PubMed ID: 25523617
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Age-related reorganizational changes in modularity and functional connectivity of human brain networks.
    Song J; Birn RM; Boly M; Meier TB; Nair VA; Meyerand ME; Prabhakaran V
    Brain Connect; 2014 Nov; 4(9):662-76. PubMed ID: 25183440
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Age- and gender-related dispersion of brain networks across the lifespan.
    Wang Q; Qi L; He C; Feng H; Xie C;
    Geroscience; 2024 Feb; 46(1):1303-1318. PubMed ID: 37542582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.