These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29518571)

  • 1. Functional correlate and delineated connectivity pattern of human motion aftereffect responses substantiate a subjacent visual-vestibular interaction.
    Rühl RM; Bauermann T; Dieterich M; Zu Eulenburg P
    Neuroimage; 2018 Jul; 174():22-34. PubMed ID: 29518571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Close correlation between activity in brain area MT/V5 and the perception of a visual motion aftereffect.
    He S; Cohen ER; Hu X
    Curr Biol; 1998 Nov; 8(22):1215-8. PubMed ID: 9811603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential dependency on motion coherence in subregions of the human MT+ complex.
    Becker HG; Erb M; Haarmeier T
    Eur J Neurosci; 2008 Oct; 28(8):1674-85. PubMed ID: 18973585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual motion responses in the posterior cingulate sulcus: a comparison to V5/MT and MST.
    Fischer E; Bülthoff HH; Logothetis NK; Bartels A
    Cereb Cortex; 2012 Apr; 22(4):865-76. PubMed ID: 21709176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model of encoding and decoding in V1 and MT accounts for motion perception anisotropies in the human visual system.
    Rokem A; Silver MA
    Brain Res; 2009 Nov; 1299():3-16. PubMed ID: 19595992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ventral and dorsal streams processing visual motion perception (FDG-PET study).
    Becker-Bense S; Buchholz HG; zu Eulenburg P; Best C; Bartenstein P; Schreckenberger M; Dieterich M
    BMC Neurosci; 2012 Jul; 13():81. PubMed ID: 22800430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding the motion aftereffect in human visual cortex.
    Hogendoorn H; Verstraten FA
    Neuroimage; 2013 Nov; 82():426-32. PubMed ID: 23777760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repetitive transcranial magnetic stimulation of human area MT/V5 disrupts perception and storage of the motion aftereffect.
    Théoret H; Kobayashi M; Ganis G; Di Capua P; Pascual-Leone A
    Neuropsychologia; 2002; 40(13):2280-7. PubMed ID: 12417458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The human middle temporal cortex responds to both active leg movements and egomotion-compatible visual motion.
    Sulpizio V; Strappini F; Fattori P; Galati G; Galletti C; Pecchinenda A; Pitzalis S
    Brain Struct Funct; 2022 Nov; 227(8):2573-2592. PubMed ID: 35963915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory and visual attention modulate motion processing in area MT+.
    Berman RA; Colby CL
    Brain Res Cogn Brain Res; 2002 Jun; 14(1):64-74. PubMed ID: 12063130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. fMRI signal increases and decreases in cortical areas during small-field optokinetic stimulation and central fixation.
    Dieterich M; Bense S; Stephan T; Yousry TA; Brandt T
    Exp Brain Res; 2003 Jan; 148(1):117-27. PubMed ID: 12478402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal basis of the motion aftereffect reconsidered.
    Huk AC; Ress D; Heeger DJ
    Neuron; 2001 Oct; 32(1):161-72. PubMed ID: 11604147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different modulation of medial superior temporal activity across saccades: a functional magnetic resonance imaging study.
    Kan S; Misaki M; Koike T; Miyauchi S
    Neuroreport; 2008 Jan; 19(2):133-7. PubMed ID: 18185096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processing of coherent visual motion in topographically organized visual areas in human cerebral cortex.
    Helfrich RF; Becker HG; Haarmeier T
    Brain Topogr; 2013 Apr; 26(2):247-63. PubMed ID: 22526896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging.
    Tootell RB; Reppas JB; Dale AM; Look RB; Sereno MI; Malach R; Brady TJ; Rosen BR
    Nature; 1995 May; 375(6527):139-41. PubMed ID: 7753168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotating One's Head Modulates the Perceived Velocity of Motion Aftereffect.
    Bai J; He X; Jiang Y; Zhang T; Bao M
    Multisens Res; 2020 Jan; 33(2):189-212. PubMed ID: 31648199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined functional MRI and diffusion tensor imaging analysis of visual motion pathways.
    Lanyon LJ; Giaschi D; Young SA; Fitzpatrick K; Diao L; Bjornson BH; Barton JJ
    J Neuroophthalmol; 2009 Jun; 29(2):96-103. PubMed ID: 19491631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extra-retinal adaptation of cortical motion-processing areas during pursuit eye movements.
    Freeman TC; Sumnall JH
    Proc Biol Sci; 2005 Oct; 272(1577):2127-32. PubMed ID: 16191625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Difference in visual motion representation between cortical areas MT and MST during ocular following responses.
    Miura K; Inaba N; Aoki Y; Kawano K
    J Neurosci; 2014 Feb; 34(6):2160-8. PubMed ID: 24501357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Connectivity Reveals Sources of Predictive Coding Signals in Early Visual Cortex During Processing of Visual Optic Flow.
    Schindler A; Bartels A
    Cereb Cortex; 2017 May; 27(5):2885-2893. PubMed ID: 27222382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.