These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 29518934)
1. Electrode Coverage Optimization for Piezoelectric Energy Harvesting from Tip Excitation. Fu H; Chen G; Bai N Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29518934 [TBL] [Abstract][Full Text] [Related]
2. Experimentally Verified Analytical Models of Piezoelectric Cantilevers in Different Design Configurations. Machu Z; Rubes O; Sevecek O; Hadas Z Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695974 [TBL] [Abstract][Full Text] [Related]
3. Vibration energy harvesting based on integrated piezoelectric components operating in different modes. Hu J; Jong J; Zhao C IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):386-94. PubMed ID: 20178904 [TBL] [Abstract][Full Text] [Related]
4. Research on the Characteristics and Application of Two-Degree-of-Freedom Diagonal Beam Piezoelectric Vibration Energy Harvester. Ma T; Sun K; Jia S; Du F; Zhang Z Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146072 [TBL] [Abstract][Full Text] [Related]
5. Theoretical and Experimental Studies on MEMS Variable Cross-Section Cantilever Beam Based Piezoelectric Vibration Energy Harvester. He X; Li D; Zhou H; Hui X; Mu X Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34208991 [TBL] [Abstract][Full Text] [Related]
6. Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers. Koven R; Mills M; Gale R; Aksak B IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1735-1743. PubMed ID: 28816659 [TBL] [Abstract][Full Text] [Related]
7. Optimization of an Impact-Based Frequency Up-Converted Piezoelectric Vibration Energy Harvester for Wearable Devices. Aceti P; Rosso M; Ardito R; Pienazza N; Nastro A; Baù M; Ferrari M; Rouvala M; Ferrari V; Corigliano A Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772429 [TBL] [Abstract][Full Text] [Related]
8. Broadband Piezoelectric Energy Harvester Based on Coupling Resonance Frequency Tuning. Hu K; Wang M Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677166 [TBL] [Abstract][Full Text] [Related]
9. A Versatile Model for Describing Energy Harvesting Characteristics of Composite-Laminated Piezoelectric Cantilever Patches. Xue X; Sun Q; Ma Q; Wang J Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746239 [TBL] [Abstract][Full Text] [Related]
10. Analyses of power output of piezoelectric energy-harvesting devices directly connected to a load resistor using a coupled piezoelectric-circuit finite element method. Zhu M; Worthington E; Njuguna J IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1309-18. PubMed ID: 19574142 [TBL] [Abstract][Full Text] [Related]
11. Experimental Characterization of Optimized Piezoelectric Energy Harvesters for Wearable Sensor Networks. Gljušćić P; Zelenika S Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770349 [TBL] [Abstract][Full Text] [Related]
12. Design study of piezoelectric energy-harvesting devices for generation of higher electrical power using a coupled piezoelectric-circuit finite element method. Zhu M; Worthington E; Tiwari A IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):427-37. PubMed ID: 20178909 [TBL] [Abstract][Full Text] [Related]
13. Analytical Modelling and Optimization of a Piezoelectric Cantilever Energy Harvester with In-Span Attachment. Homayouni-Amlashi A; Mohand-Ousaid A; Rakotondrabe M Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32545825 [TBL] [Abstract][Full Text] [Related]
14. Peculiarities of the third natural frequency vibrations of a cantilever for the improvement of energy harvesting. Ostasevicius V; Janusas G; Milasauskaite I; Zilys M; Kizauskiene L Sensors (Basel); 2015 May; 15(6):12594-612. PubMed ID: 26029948 [TBL] [Abstract][Full Text] [Related]
15. Theoretical and Experimental Investigation of a Rotational Magnetic Couple Piezoelectric Energy Harvester. Sun F; Dong R; Zhou R; Xu F; Mei X Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744550 [TBL] [Abstract][Full Text] [Related]
16. Research on nonlinear isometric L-shaped cantilever beam type piezoelectric wind energy harvester based on magnetic coupling. He L; Yu G; Han Y; Liu L; Hu D; Cheng G Rev Sci Instrum; 2022 Nov; 93(11):115004. PubMed ID: 36461430 [TBL] [Abstract][Full Text] [Related]
17. Analysis of Output Performance of a Novel Symmetrical T-Shaped Trapezoidal Micro Piezoelectric Energy Harvester Using a PZT-5H. Xu W; Ao H; Zhou N; Song Z; Jiang H Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208405 [TBL] [Abstract][Full Text] [Related]
18. Investigation of a Novel Ultra-Low-Frequency Rotational Energy Harvester Based on a Double-Frequency Up-Conversion Mechanism. Li N; Xia H; Yang C; Luo T; Qin L Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630182 [TBL] [Abstract][Full Text] [Related]
19. Design and Experimental Investigation of a Rotational Piezoelectric Energy Harvester with an Offset Distance from the Rotation Center. Chen J; Liu X; Wang H; Wang S; Guan M Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334679 [TBL] [Abstract][Full Text] [Related]
20. Design optimization of PVDF-based piezoelectric energy harvesters. Song J; Zhao G; Li B; Wang J Heliyon; 2017 Sep; 3(9):e00377. PubMed ID: 28948235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]