These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 29518966)

  • 1. Blood Compatibility of Sulfonated Cladophora Nanocellulose Beads.
    Rocha I; Lindh J; Hong J; Strømme M; Mihranyan A; Ferraz N
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29518966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic and Physicochemical Characterization of Sulfonated Cladophora Cellulose Beads.
    Rocha I; Hattori Y; Diniz M; Mihranyan A; Strømme M; Lindh J
    Langmuir; 2018 Sep; 34(37):11121-11125. PubMed ID: 30169040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aspirin degradation in surface-charged TEMPO-oxidized mesoporous crystalline nanocellulose.
    Carlsson DO; Hua K; Forsgren J; Mihranyan A
    Int J Pharm; 2014 Jan; 461(1-2):74-81. PubMed ID: 24291076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A size-exclusion nanocellulose filter paper for virus removal.
    Metreveli G; Wågberg L; Emmoth E; Belák S; Strømme M; Mihranyan A
    Adv Healthc Mater; 2014 Oct; 3(10):1546-50, 1524. PubMed ID: 24687994
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Zhou S; Nyholm L; Strømme M; Wang Z
    Acc Chem Res; 2019 Aug; 52(8):2232-2243. PubMed ID: 31290643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of porous 2,3-dialdehyde cellulose beads crosslinked with chitosan and their application in adsorption of Congo red dye.
    Ruan CQ; Strømme M; Lindh J
    Carbohydr Polym; 2018 Feb; 181():200-207. PubMed ID: 29253964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of dielectric properties of nanocellulose from wood and algae for electrical insulator applications.
    Le Bras D; Strømme M; Mihranyan A
    J Phys Chem B; 2015 May; 119(18):5911-7. PubMed ID: 25885570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose nanocrystals from marine algae Cladophora glomerata by using microwave-assisted extraction.
    Plianwong S; Sirirak T
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129422. PubMed ID: 38219928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering nanocellulose hydrogels for biomedical applications.
    Curvello R; Raghuwanshi VS; Garnier G
    Adv Colloid Interface Sci; 2019 May; 267():47-61. PubMed ID: 30884359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of nanocellulose and its potential in reinforced composites: A review.
    Wang J; Liu X; Jin T; He H; Liu L
    J Biomater Sci Polym Ed; 2019 Aug; 30(11):919-946. PubMed ID: 31122154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of hemocompatible cellulosic paper based on P(DMAPS)-functionalized surface.
    Lv W; Cai B; Song Y; Zhao H; Jiang X; Zhou X; Yu R; Mao C
    Colloids Surf B Biointerfaces; 2014 Apr; 116():537-43. PubMed ID: 24583257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemocompatibility of Ca
    Basu A; Hong J; Ferraz N
    Macromol Biosci; 2017 Nov; 17(11):. PubMed ID: 28941135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the Alga
    Mihhels K; Yousefi N; Blomster J; Solala I; Solhi L; Kontturi E
    Biomacromolecules; 2023 Nov; 24(11):4672-4679. PubMed ID: 37729475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocellulose-Based Antibacterial Materials.
    Li J; Cha R; Mou K; Zhao X; Long K; Luo H; Zhou F; Jiang X
    Adv Healthc Mater; 2018 Oct; 7(20):e1800334. PubMed ID: 29923342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulose carbamates and derivatives as hemocompatible membrane materials for hemodialysis.
    Diamantoglou M; Platz J; Vienken J
    Artif Organs; 1999 Jan; 23(1):15-22. PubMed ID: 9950174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of unique HBr-hydrolyzed cellulose nanocrystals from freshwater green algae (Cladophora rupestris) and its reinforcement in starch-based film.
    Sucaldito MR; Camacho DH
    Carbohydr Polym; 2017 Aug; 169():315-323. PubMed ID: 28504150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications.
    Xue Y; Mou Z; Xiao H
    Nanoscale; 2017 Oct; 9(39):14758-14781. PubMed ID: 28967940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mussel-inspired approach towards heparin-immobilized cellulose gel beads for selective removal of low density lipoprotein from whole blood.
    Li Y; Han M; Wang Y; Liu Q; Zhao W; Su B; Zhao C
    Carbohydr Polym; 2018 Dec; 202():116-124. PubMed ID: 30286984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convenient one-pot formation of 2,3-dialdehyde cellulose beads via periodate oxidation of cellulose in water.
    Lindh J; Carlsson DO; Strømme M; Mihranyan A
    Biomacromolecules; 2014 May; 15(5):1928-32. PubMed ID: 24708448
    [No Abstract]   [Full Text] [Related]  

  • 20. Considerations on developmental aspects of biocompatible dialysis membranes.
    Vienken J; Diamantoglou M; Hahn C; Kamusewitz H; Paul D
    Artif Organs; 1995 May; 19(5):398-406. PubMed ID: 7625917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.