These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29519043)

  • 1. Dispersion synthesis with multi-ordered metatronic filters.
    Li Y; Liberal I; Engheta N
    Opt Express; 2017 Feb; 25(3):1937-1948. PubMed ID: 29519043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Waveguide metatronics: Lumped circuitry based on structural dispersion.
    Li Y; Liberal I; Della Giovampaola C; Engheta N
    Sci Adv; 2016 Jun; 2(6):e1501790. PubMed ID: 27386566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of epsilon-near-zero (ENZ) and mu-near-zero (MNZ) materials in optical metatronic circuit networks.
    Abbasi F; Engheta N
    Opt Express; 2014 Oct; 22(21):25109-19. PubMed ID: 25401543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equivalent-nanocircuit-theory-based design to infrared broad band-stop filters.
    Zhang Q; Bai L; Bai Z; Hu P; Liu C
    Opt Express; 2015 Apr; 23(7):8290-7. PubMed ID: 25968667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable photonic filters: a digital signal processing design approach.
    Binh le N
    Appl Opt; 2009 May; 48(15):2799-810. PubMed ID: 19458728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared metatronic nanocircuits by design.
    Caglayan H; Hong SH; Edwards B; Kagan CR; Engheta N
    Phys Rev Lett; 2013 Aug; 111(7):073904. PubMed ID: 23992069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave engineering filter synthesis technique for coupled ridge resonator filters.
    Nguyen TG; Yego K; Ren G; Boes A; Mitchell A
    Opt Express; 2019 Nov; 27(23):34370-34381. PubMed ID: 31878485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-chip optical filters with designable characteristics based on an interferometer with embedded silicon photonic structures.
    Kocaman S; Aras MS; Panoiu NC; Lu M; Wong CW
    Opt Lett; 2012 Feb; 37(4):665-7. PubMed ID: 22344141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Planar tunable graphene based low-pass filter in the terahertz band.
    Ghahremani A; Moradi G
    Appl Opt; 2018 Sep; 57(27):7823-7829. PubMed ID: 30462048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Hybrid Circuit for Spoof Surface Plasmons and Spatial Waveguide Modes to Reach Controllable Band-Pass Filters.
    Zhang Q; Zhang HC; Wu H; Cui TJ
    Sci Rep; 2015 Nov; 5():16531. PubMed ID: 26552584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical design of flat-top transmission filters composed of several resonant structures.
    Doskolovich LL; Golovastikov NV; Bykov DA; Bezus EA
    Opt Express; 2019 Sep; 27(19):26786-26798. PubMed ID: 31674553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Dual-band Band-Pass Filters Based on Surface Plasmon Polariton-like Propagation Induced by Structural Dispersion of Substrate Integrated Waveguide.
    Cselyuszka N; Sakotic Z; Kitic G; Crnojevic-Bengin V; Jankovic N
    Sci Rep; 2018 May; 8(1):8332. PubMed ID: 29844527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and plasma deposition of dispersion-corrected multiband rugate filters.
    Poitras D; Larouche S; Martinu L
    Appl Opt; 2002 Sep; 41(25):5249-55. PubMed ID: 12211550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angle-insensitive plasmonic nanorod metamaterial-based band-pass optical filters.
    Wells BM; Lotti F; Nasir ME; Zayats AV; Podolskiy VA
    Opt Express; 2021 Apr; 29(8):11562-11569. PubMed ID: 33984933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lattice models for large-scale simulations of coherent wave scattering.
    Wang S; Teixeira FL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016701. PubMed ID: 14995749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of short-wavelength infrared dual-band-pass filter based on combination of Fabry-Perot filters.
    Cai Y; Zhou S; Ma X; Liu D
    Appl Opt; 2016 Nov; 55(33):9412-9416. PubMed ID: 27869842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable, nondispersive optical filter using photonic Hilbert transformation.
    Bazargani HP; Fernández-Ruiz Mdel R; Azaña J
    Opt Lett; 2014 Sep; 39(17):5232-5. PubMed ID: 25166117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dispersion engineering of metasurfaces for dual-frequency quasi-three-dimensional cloaking of microwave radiators.
    Jiang ZH; Werner DH
    Opt Express; 2016 May; 24(9):9629-44. PubMed ID: 27137576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines.
    Wang Z; Fan S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066616. PubMed ID: 14754345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic computer-aided design of SAW filters using slanted finger interdigital transducers.
    Yatsuda H; Yamanouchi K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):140-7. PubMed ID: 18238525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.