These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 29519057)

  • 21. Laser-induced self-assembly of silver nanoparticles via plasmonic interactions.
    Tanaka Y; Yoshikawa H; Itoh T; Ishikawa M
    Opt Express; 2009 Oct; 17(21):18760-7. PubMed ID: 20372608
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection of silver nanoparticles in cells by flow cytometry using light scatter and far-red fluorescence.
    Zucker RM; Daniel KM; Massaro EJ; Karafas SJ; Degn LL; Boyes WK
    Cytometry A; 2013 Oct; 83(10):962-72. PubMed ID: 23943267
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High performance organic distributed Bragg reflector lasers fabricated by dot matrix holography.
    Wan W; Huang W; Pu D; Qiao W; Ye Y; Wei G; Fang Z; Zhou X; Chen L
    Opt Express; 2015 Dec; 23(25):31926-35. PubMed ID: 26698984
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Femtosecond laser-pumped plasmonically enhanced near-infrared random laser based on engineered scatterers.
    Gummaluri VS; Nair RV; Krishnan SR; Vijayan C
    Opt Lett; 2017 Dec; 42(23):5002-5005. PubMed ID: 29216166
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorescence enhancement from nano-gap embedded plasmonic gratings by a novel fabrication technique with HD-DVD.
    Bhatnagar K; Pathak A; Menke D; Cornish PV; Gangopadhyay K; Korampally V; Gangopadhyay S
    Nanotechnology; 2012 Dec; 23(49):495201. PubMed ID: 23154752
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide.
    Awazu K; Fujimaki M; Rockstuhl C; Tominaga J; Murakami H; Ohki Y; Yoshida N; Watanabe T
    J Am Chem Soc; 2008 Feb; 130(5):1676-80. PubMed ID: 18189392
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface plasmon polariton amplification in metal-semiconductor structures.
    Fedyanin DY; Arsenin AV
    Opt Express; 2011 Jun; 19(13):12524-31. PubMed ID: 21716493
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three dimensional design of silver nanoparticle assemblies embedded in dielectrics for Raman spectroscopy enhancement and dark-field imaging.
    Carles R; Farcau C; Bonafos C; Benassayag G; Bayle M; Benzo P; Groenen J; Zwick A
    ACS Nano; 2011 Nov; 5(11):8774-82. PubMed ID: 21988138
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: silver nanocubes.
    Mahmoud MA; Chamanzar M; Adibi A; El-Sayed MA
    J Am Chem Soc; 2012 Apr; 134(14):6434-42. PubMed ID: 22420824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Random lasing in blue phase liquid crystals.
    Chen CW; Jau HC; Wang CT; Lee CH; Khoo IC; Lin TH
    Opt Express; 2012 Oct; 20(21):23978-84. PubMed ID: 23188364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gold nanostars for random lasing enhancement.
    Ziegler J; Djiango M; Vidal C; Hrelescu C; Klar TA
    Opt Express; 2015 Jun; 23(12):15152-9. PubMed ID: 26193498
    [TBL] [Abstract][Full Text] [Related]  

  • 34. All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets.
    Lee CR; Lin SH; Guo CH; Chang SH; Mo TS; Chu SC
    Opt Express; 2010 Feb; 18(3):2406-12. PubMed ID: 20174070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wavelength dependent specific plasmon resonance coupling of single silver nanoparticles with EGFP.
    Lee KJ; Huang T; Nallathamby PD; Xu XH
    Nanoscale; 2015 Nov; 7(42):17623-30. PubMed ID: 26455449
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmonic ZnO/Ag embedded structures as collecting layers for photogenerating electrons in solar hydrogen generation photoelectrodes.
    Chen HM; Chen CK; Tseng ML; Wu PC; Chang CM; Cheng LC; Huang HW; Chan TS; Huang DW; Liu RS; Tsai DP
    Small; 2013 Sep; 9(17):2926-36. PubMed ID: 23427053
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Substrate-based platform for boosting the surface-enhanced Raman of plasmonic nanoparticles.
    Min Q; Pang Y; Collins DJ; Kuklev NA; Gottselig K; Steuerman DW; Gordon R
    Opt Express; 2011 Jan; 19(2):1648-55. PubMed ID: 21263704
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expanding the plasmonic response of bimetallic nanoparticles by laser seeding.
    Peláez RJ; Rodríguez CE; Afonso CN
    Nanotechnology; 2016 Mar; 27(10):105301. PubMed ID: 26866902
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fano resonance-induced negative optical scattering force on plasmonic nanoparticles.
    Chen H; Liu S; Zi J; Lin Z
    ACS Nano; 2015 Feb; 9(2):1926-35. PubMed ID: 25635617
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purified plasmonic lasing with strong polarization selectivity by reflection.
    Li G; Liu X; Wang X; Yuan Y; Sum TC; Xiong Q
    Opt Express; 2015 Jun; 23(12):15657-69. PubMed ID: 26193545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.