These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
28. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Jain PK; Huang X; El-Sayed IH; El-Sayed MA Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366 [TBL] [Abstract][Full Text] [Related]
30. Three dimensional design of silver nanoparticle assemblies embedded in dielectrics for Raman spectroscopy enhancement and dark-field imaging. Carles R; Farcau C; Bonafos C; Benassayag G; Bayle M; Benzo P; Groenen J; Zwick A ACS Nano; 2011 Nov; 5(11):8774-82. PubMed ID: 21988138 [TBL] [Abstract][Full Text] [Related]
31. Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: silver nanocubes. Mahmoud MA; Chamanzar M; Adibi A; El-Sayed MA J Am Chem Soc; 2012 Apr; 134(14):6434-42. PubMed ID: 22420824 [TBL] [Abstract][Full Text] [Related]
32. Random lasing in blue phase liquid crystals. Chen CW; Jau HC; Wang CT; Lee CH; Khoo IC; Lin TH Opt Express; 2012 Oct; 20(21):23978-84. PubMed ID: 23188364 [TBL] [Abstract][Full Text] [Related]
33. Gold nanostars for random lasing enhancement. Ziegler J; Djiango M; Vidal C; Hrelescu C; Klar TA Opt Express; 2015 Jun; 23(12):15152-9. PubMed ID: 26193498 [TBL] [Abstract][Full Text] [Related]
34. All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets. Lee CR; Lin SH; Guo CH; Chang SH; Mo TS; Chu SC Opt Express; 2010 Feb; 18(3):2406-12. PubMed ID: 20174070 [TBL] [Abstract][Full Text] [Related]
35. Wavelength dependent specific plasmon resonance coupling of single silver nanoparticles with EGFP. Lee KJ; Huang T; Nallathamby PD; Xu XH Nanoscale; 2015 Nov; 7(42):17623-30. PubMed ID: 26455449 [TBL] [Abstract][Full Text] [Related]
36. Plasmonic ZnO/Ag embedded structures as collecting layers for photogenerating electrons in solar hydrogen generation photoelectrodes. Chen HM; Chen CK; Tseng ML; Wu PC; Chang CM; Cheng LC; Huang HW; Chan TS; Huang DW; Liu RS; Tsai DP Small; 2013 Sep; 9(17):2926-36. PubMed ID: 23427053 [TBL] [Abstract][Full Text] [Related]
37. Substrate-based platform for boosting the surface-enhanced Raman of plasmonic nanoparticles. Min Q; Pang Y; Collins DJ; Kuklev NA; Gottselig K; Steuerman DW; Gordon R Opt Express; 2011 Jan; 19(2):1648-55. PubMed ID: 21263704 [TBL] [Abstract][Full Text] [Related]
38. Expanding the plasmonic response of bimetallic nanoparticles by laser seeding. Peláez RJ; Rodríguez CE; Afonso CN Nanotechnology; 2016 Mar; 27(10):105301. PubMed ID: 26866902 [TBL] [Abstract][Full Text] [Related]
39. Fano resonance-induced negative optical scattering force on plasmonic nanoparticles. Chen H; Liu S; Zi J; Lin Z ACS Nano; 2015 Feb; 9(2):1926-35. PubMed ID: 25635617 [TBL] [Abstract][Full Text] [Related]
40. Purified plasmonic lasing with strong polarization selectivity by reflection. Li G; Liu X; Wang X; Yuan Y; Sum TC; Xiong Q Opt Express; 2015 Jun; 23(12):15657-69. PubMed ID: 26193545 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]