These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 29519060)

  • 1. High-efficiency surface plasmonic polariton waveguides with enhanced low-frequency performance in microwave frequencies.
    Zhang D; Zhang K; Wu Q; Ding X; Sha X
    Opt Express; 2017 Feb; 25(3):2121-2129. PubMed ID: 29519060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel non-periodic spoof surface plasmon polaritons with H-shaped cells and its application to high selectivity wideband bandpass filter.
    Gao X; Che W; Feng W
    Sci Rep; 2018 Feb; 8(1):2456. PubMed ID: 29410420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spoof Surface Plasmon Polaritons Power Divider with large Isolation.
    Zhou S; Lin JY; Wong SW; Deng F; Zhu L; Yang Y; He Y; Tu ZH
    Sci Rep; 2018 Apr; 8(1):5947. PubMed ID: 29654254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband high-order mode of spoof surface plasmon polaritons supported by compact complementary structure with high efficiency.
    Zhang D; Zhang K; Wu Q; Dai R; Sha X
    Opt Lett; 2018 Jul; 43(13):3176-3179. PubMed ID: 29957810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-efficiency broadband excitation and propagation of second-mode spoof surface plasmon polaritons by a complementary structure.
    Zhang D; Zhang K; Wu Q; Yang G; Sha X
    Opt Lett; 2017 Jul; 42(14):2766-2769. PubMed ID: 28708164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trapping surface plasmon polaritons on ultrathin corrugated metallic strips in microwave frequencies.
    Yang Y; Shen X; Zhao P; Zhang HC; Cui TJ
    Opt Express; 2015 Mar; 23(6):7031-7. PubMed ID: 25837047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Terahertz broadband spoof surface plasmon polaritons using high-order mode developed from ultra-compact split-ring grooves.
    Xu KD; Guo YJ; Deng X
    Opt Express; 2019 Feb; 27(4):4354-4363. PubMed ID: 30876052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide.
    Kong GS; Ma HF; Cai BG; Cui TJ
    Sci Rep; 2016 Jul; 6():29600. PubMed ID: 27404740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Spoof Surface Plasmon Polaritons (SSPPs) Based Dual-Band-Rejection Filter with Wide Rejection Bandwidth.
    Farokhipour E; Mehrabi M; Komjani N; Ding C
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33352711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strongly Confined Spoof Surface Plasmon Polaritons Waveguiding Enabled by Planar Staggered Plasmonic Waveguides.
    Ye L; Xiao Y; Liu Y; Zhang L; Cai G; Liu QH
    Sci Rep; 2016 Dec; 6():38528. PubMed ID: 27917930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smooth bridge between guided waves and spoof surface plasmon polaritons.
    Liu L; Li Z; Gu C; Xu B; Ning P; Chen C; Yan J; Niu Z; Zhao Y
    Opt Lett; 2015 Apr; 40(8):1810-3. PubMed ID: 25872080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation loss of planar surface plasmon polaritons transmission lines at microwave frequencies.
    Xu Z; Li S; Yin X; Zhao H; Liu L
    Sci Rep; 2017 Jul; 7(1):6098. PubMed ID: 28733683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of mechanism: spoof SPPs on periodically textured metal surface with pyramidal grooves.
    Tian L; Liu J; Zhou K; Gao Y; Liu S
    Sci Rep; 2016 Aug; 6():32008. PubMed ID: 27557872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-wideband filtering of spoof surface plasmon polaritons using deep subwavelength planar structures.
    Hu MZ; Zhang HC; Yin JY; Ding Z; Liu JF; Tang WX; Cui TJ
    Sci Rep; 2016 Nov; 6():37605. PubMed ID: 27883028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spoof surface plasmon polaritons based on ultrathin corrugated metallic grooves at terahertz frequency.
    Liu Y; Yan J; Shao Y; Pan J; Zhang C; Hao Y; Han G
    Appl Opt; 2016 Mar; 55(7):1720-4. PubMed ID: 26974635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-layer topological transmissions of spoof surface plasmon polaritons.
    Pan BC; Zhao J; Liao Z; Zhang HC; Cui TJ
    Sci Rep; 2016 Mar; 6():22702. PubMed ID: 26939995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Planar spoof plasmonic ultra-wideband filter based on low-loss and compact terahertz waveguide corrugated with dumbbell grooves.
    Zhou YJ; Yang BJ
    Appl Opt; 2015 May; 54(14):4529-33. PubMed ID: 25967512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Broadband Band-pass Filter Based on Spoof Surface Plasmon Polaritons.
    Zhao L; Zhang X; Wang J; Yu W; Li J; Su H; Shen X
    Sci Rep; 2016 Oct; 6():36069. PubMed ID: 27796313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Band-Pass Filter Based on Half-Mode Substrate Integrated Waveguide and Spoof Surface Plasmon Polaritons.
    Zhao L; Li Y; Chen ZM; Liang XH; Wang J; Shen X; Zhang Q
    Sci Rep; 2019 Sep; 9(1):13429. PubMed ID: 31530864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable band-notched coplanar waveguide based on localized spoof surface plasmons.
    Xu B; Li Z; Liu L; Xu J; Chen C; Ning P; Chen X; Gu C
    Opt Lett; 2015 Oct; 40(20):4683-6. PubMed ID: 26469594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.