These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 29519442)
1. Three-dimensional printing of shape memory hydrogels with internal structure for drug delivery. Wang Y; Miao Y; Zhang J; Wu JP; Kirk TB; Xu J; Ma D; Xue W Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():44-51. PubMed ID: 29519442 [TBL] [Abstract][Full Text] [Related]
2. Stereolithographic printing of ionically-crosslinked alginate hydrogels for degradable biomaterials and microfluidics. Valentin TM; Leggett SE; Chen PY; Sodhi JK; Stephens LH; McClintock HD; Sim JY; Wong IY Lab Chip; 2017 Oct; 17(20):3474-3488. PubMed ID: 28906525 [TBL] [Abstract][Full Text] [Related]
4. Friction of sodium alginate hydrogel scaffold fabricated by 3-D printing. Yang Q; Li J; Xu H; Long S; Li X J Biomater Sci Polym Ed; 2017 Apr; 28(5):459-469. PubMed ID: 28105891 [TBL] [Abstract][Full Text] [Related]
5. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091 [TBL] [Abstract][Full Text] [Related]
6. Injectable photo crosslinked enhanced double-network hydrogels from modified sodium alginate and gelatin. Yuan L; Wu Y; Gu QS; El-Hamshary H; El-Newehy M; Mo X Int J Biol Macromol; 2017 Mar; 96():569-577. PubMed ID: 28017764 [TBL] [Abstract][Full Text] [Related]
7. Three dimensional cell printing with sulfated alginate for improved bone morphogenetic protein-2 delivery and osteogenesis in bone tissue engineering. Park J; Lee SJ; Lee H; Park SA; Lee JY Carbohydr Polym; 2018 Sep; 196():217-224. PubMed ID: 29891290 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and evaluation of functional alginate hydrogels based on click chemistry for drug delivery applications. García-Astrain C; Avérous L Carbohydr Polym; 2018 Jun; 190():271-280. PubMed ID: 29628248 [TBL] [Abstract][Full Text] [Related]
9. Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting. Müller M; Becher J; Schnabelrauch M; Zenobi-Wong M Biofabrication; 2015 Aug; 7(3):035006. PubMed ID: 26260872 [TBL] [Abstract][Full Text] [Related]
10. Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering. Yan J; Miao Y; Tan H; Zhou T; Ling Z; Chen Y; Xing X; Hu X Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():274-84. PubMed ID: 27040220 [TBL] [Abstract][Full Text] [Related]
11. Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template. Wang XY; Jin ZH; Gan BW; Lv SW; Xie M; Huang WH Lab Chip; 2014 Aug; 14(15):2709-16. PubMed ID: 24887141 [TBL] [Abstract][Full Text] [Related]
12. Investigation of cell viability and morphology in 3D bio-printed alginate constructs with tunable stiffness. Shi P; Laude A; Yeong WY J Biomed Mater Res A; 2017 Apr; 105(4):1009-1018. PubMed ID: 27935198 [TBL] [Abstract][Full Text] [Related]
13. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications. Janarthanan G; Tran HN; Cha E; Lee C; Das D; Noh I Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111008. PubMed ID: 32487412 [TBL] [Abstract][Full Text] [Related]
14. Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: Characterization and evaluation. Park J; Lee SJ; Chung S; Lee JH; Kim WD; Lee JY; Park SA Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():678-684. PubMed ID: 27987760 [TBL] [Abstract][Full Text] [Related]
15. Delivery of cisplatin from Pluronic co-polymer systems: liposome inclusion and alginate coupling. Fang JY; Hsu SH; Leu YL; Hu JW J Biomater Sci Polym Ed; 2009; 20(7-8):1031-47. PubMed ID: 19454167 [TBL] [Abstract][Full Text] [Related]
16. A 3D-printable TEMPO-oxidized bacterial cellulose/alginate hydrogel with enhanced stability via nanoclay incorporation. Wei J; Wang B; Li Z; Wu Z; Zhang M; Sheng N; Liang Q; Wang H; Chen S Carbohydr Polym; 2020 Jun; 238():116207. PubMed ID: 32299554 [TBL] [Abstract][Full Text] [Related]
17. A novel bio electro active alginate-aniline tetramer/ agarose scaffold for tissue engineering: synthesis, characterization, drug release and cell culture study. Atoufi Z; Zarrintaj P; Motlagh GH; Amiri A; Bagher Z; Kamrava SK J Biomater Sci Polym Ed; 2017 Oct; 28(15):1617-1638. PubMed ID: 28589747 [TBL] [Abstract][Full Text] [Related]
18. Interpenetrating hydrogels of O-carboxymethyl Tamarind gum and alginate for monitoring delivery of acyclovir. Jana S; Sharma R; Maiti S; Sen KK Int J Biol Macromol; 2016 Nov; 92():1034-1039. PubMed ID: 27514441 [TBL] [Abstract][Full Text] [Related]
19. In vitro drug release profiles of pH-sensitive hydroxyethylacryl chitosan/sodium alginate hydrogels using paracetamol as a soluble model drug. Treenate P; Monvisade P Int J Biol Macromol; 2017 Jun; 99():71-78. PubMed ID: 28219689 [TBL] [Abstract][Full Text] [Related]
20. Development of a clay based bioink for 3D cell printing for skeletal application. Ahlfeld T; Cidonio G; Kilian D; Duin S; Akkineni AR; Dawson JI; Yang S; Lode A; Oreffo ROC; Gelinsky M Biofabrication; 2017 Jul; 9(3):034103. PubMed ID: 28691691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]