BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 29519515)

  • 1. Interaction of porcine monocyte-derived dendritic cells with African swine fever viruses of diverse virulence.
    Franzoni G; Graham SP; Sanna G; Angioi P; Fiori MS; Anfossi A; Amadori M; Dei Giudici S; Oggiano A
    Vet Microbiol; 2018 Mar; 216():190-197. PubMed ID: 29519515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the interaction of African swine fever virus with monocytes and derived macrophage subsets.
    Franzoni G; Graham SP; Giudici SD; Bonelli P; Pilo G; Anfossi AG; Pittau M; Nicolussi PS; Laddomada A; Oggiano A
    Vet Microbiol; 2017 Jan; 198():88-98. PubMed ID: 28062012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. African Swine Fever Virus Armenia/07 Virulent Strain Controls Interferon Beta Production through the cGAS-STING Pathway.
    García-Belmonte R; Pérez-Núñez D; Pittau M; Richt JA; Revilla Y
    J Virol; 2019 Jun; 93(12):. PubMed ID: 30918080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns of alveolar macrophage activation upon attenuated and virulent African swine fever viruses in vitro.
    Tatoyan MR; Izmailyan RA; Semerjyan AB; Karalyan NY; Sahakyan CT; Mkrtchyan GL; Ghazaryan HK; Arzumanyan HH; Semerjyan ZB; Karalova EM; Karalyan ZA
    Comp Immunol Microbiol Infect Dis; 2020 Oct; 72():101513. PubMed ID: 32569898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infection, modulation and responses of antigen-presenting cells to African swine fever viruses.
    Franzoni G; Dei Giudici S; Oggiano A
    Virus Res; 2018 Oct; 258():73-80. PubMed ID: 30316802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Macrophage Responses to African Swine Fever Viruses Reveals that the NH/P68 Strain is Associated with Enhanced Sensitivity to Type I IFN and Cytokine Responses from Classically Activated Macrophages.
    Franzoni G; Razzuoli E; Dei Giudici S; Carta T; Galleri G; Zinellu S; Ledda M; Angioi P; Modesto P; Graham SP; Oggiano A
    Pathogens; 2020 Mar; 9(3):. PubMed ID: 32178332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the Impact of a Toll-like Receptor 2 Agonist Synthetic Lipopeptide on Macrophage Susceptibility and Responses to African Swine Fever Virus Infection.
    Franzoni G; Zinellu S; Razzuoli E; Mura L; De Ciucis CG; De Paolis L; Carta T; Anfossi AG; Graham SP; Chessa B; Dei Giudici S; Oggiano A
    Viruses; 2022 Oct; 14(10):. PubMed ID: 36298767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A QP509L/QP383R-Deleted African Swine Fever Virus Is Highly Attenuated in Swine but Does Not Confer Protection against Parental Virus Challenge.
    Li D; Wu P; Liu H; Feng T; Yang W; Ru Y; Li P; Qi X; Shi Z; Zheng H
    J Virol; 2022 Jan; 96(1):e0150021. PubMed ID: 34613824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous Deletion of the 9GL and UK Genes from the African Swine Fever Virus Georgia 2007 Isolate Offers Increased Safety and Protection against Homologous Challenge.
    O'Donnell V; Risatti GR; Holinka LG; Krug PW; Carlson J; Velazquez-Salinas L; Azzinaro PA; Gladue DP; Borca MV
    J Virol; 2017 Jan; 91(1):. PubMed ID: 27795430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression at mRNA level of cytokines and A238L gene in porcine blood-derived macrophages infected in vitro with African swine fever virus (ASFV) isolates of different virulence.
    Gil S; Spagnuolo-Weaver M; Canals A; Sepúlveda N; Oliveira J; Aleixo A; Allan G; Leitão A; Martins CL
    Arch Virol; 2003 Nov; 148(11):2077-97. PubMed ID: 14579171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apoptosis in porcine macrophages infected in vitro with African swine fever virus (ASFV) strains with different virulence.
    Portugal R; Leitão A; Martins C
    Arch Virol; 2009; 154(9):1441-50. PubMed ID: 19657705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity of African swine fever virus to type I interferon is linked to genes within multigene families 360 and 505.
    Golding JP; Goatley L; Goodbourn S; Dixon LK; Taylor G; Netherton CL
    Virology; 2016 Jun; 493():154-61. PubMed ID: 27043071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a Highly Effective African Swine Fever Virus Vaccine by Deletion of the I177L Gene Results in Sterile Immunity against the Current Epidemic Eurasia Strain.
    Borca MV; Ramirez-Medina E; Silva E; Vuono E; Rai A; Pruitt S; Holinka LG; Velazquez-Salinas L; Zhu J; Gladue DP
    J Virol; 2020 Mar; 94(7):. PubMed ID: 31969432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analyses of the Impact of Immunosuppressive Cytokines on Porcine Macrophage Responses and Susceptibility to Infection to African Swine Fever Viruses.
    Franzoni G; Zinellu S; Carta T; De Ciucis CG; Fruscione F; Anfossi A; Ledda M; Graham SP; Dei Giudici S; Razzuoli E; Oggiano A
    Pathogens; 2022 Jan; 11(2):. PubMed ID: 35215110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of African swine fever virus pathogenesis and immune evasion inferred from gene expression changes in infected swine macrophages.
    Zhu JJ; Ramanathan P; Bishop EA; O'Donnell V; Gladue DP; Borca MV
    PLoS One; 2019; 14(11):e0223955. PubMed ID: 31725732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. African Swine Fever Virus and Host Response: Transcriptome Profiling of the Georgia 2007/1 Strain and Porcine Macrophages.
    Cackett G; Portugal R; Matelska D; Dixon L; Werner F
    J Virol; 2022 Mar; 96(5):e0193921. PubMed ID: 35019713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infection of Human Macrophage-Like Cells by African Swine Fever Virus.
    Karalyan ZA; Ghonyan SA; Poghosyan DA; Hakobyan LH; Avagyan HR; Avetisyan AS; Abroyan LO; Poghosyan AA; Hakobyan SA; Manukyan GP
    Front Biosci (Landmark Ed); 2024 Apr; 29(4):164. PubMed ID: 38682190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. African swine fever virus (ASFV) protection mediated by NH/P68 and NH/P68 recombinant live-attenuated viruses.
    Gallardo C; Sánchez EG; Pérez-Núñez D; Nogal M; de León P; Carrascosa ÁL; Nieto R; Soler A; Arias ML; Revilla Y
    Vaccine; 2018 May; 36(19):2694-2704. PubMed ID: 29609966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential Effect of the Deletion of African Swine Fever Virus Virulence-Associated Genes in the Induction of Attenuation of the Highly Virulent Georgia Strain.
    Ramirez-Medina E; Vuono E; O'Donnell V; Holinka LG; Silva E; Rai A; Pruitt S; Carrillo C; Gladue DP; Borca MV
    Viruses; 2019 Jul; 11(7):. PubMed ID: 31269702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of Type I Interferon System by African Swine Fever Virus.
    Razzuoli E; Franzoni G; Carta T; Zinellu S; Amadori M; Modesto P; Oggiano A
    Pathogens; 2020 May; 9(5):. PubMed ID: 32397378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.