BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

578 related articles for article (PubMed ID: 29519807)

  • 41. 14q32 and let-7 microRNAs regulate transcriptional networks in fetal and adult human erythroblasts.
    Lessard S; Beaudoin M; Orkin SH; Bauer DE; Lettre G
    Hum Mol Genet; 2018 Apr; 27(8):1411-1420. PubMed ID: 29432581
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Therapeutic base editing of human hematopoietic stem cells.
    Zeng J; Wu Y; Ren C; Bonanno J; Shen AH; Shea D; Gehrke JM; Clement K; Luk K; Yao Q; Kim R; Wolfe SA; Manis JP; Pinello L; Joung JK; Bauer DE
    Nat Med; 2020 Apr; 26(4):535-541. PubMed ID: 32284612
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Using Clustered Regularly Interspaced Short Palindromic Repeats gene editing to induce permanent expression of fetal hemoglobin in β-thalassemia and sickle cell disease: A comparative meta-analysis.
    Quagliano A; Acevedo D; Hardigan P; Prasad S
    Front Med (Lausanne); 2022; 9():943631. PubMed ID: 36250099
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 3'HS1 CTCF binding site in human β-globin locus regulates fetal hemoglobin expression.
    Himadewi P; Wang XQD; Feng F; Gore H; Liu Y; Yu L; Kurita R; Nakamura Y; Pfeifer GP; Liu J; Zhang X
    Elife; 2021 Sep; 10():. PubMed ID: 34585664
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genome editing approaches to β-hemoglobinopathies.
    Brusson M; Miccio A
    Prog Mol Biol Transl Sci; 2021; 182():153-183. PubMed ID: 34175041
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Base editing of haematopoietic stem cells rescues sickle cell disease in mice.
    Newby GA; Yen JS; Woodard KJ; Mayuranathan T; Lazzarotto CR; Li Y; Sheppard-Tillman H; Porter SN; Yao Y; Mayberry K; Everette KA; Jang Y; Podracky CJ; Thaman E; Lechauve C; Sharma A; Henderson JM; Richter MF; Zhao KT; Miller SM; Wang T; Koblan LW; McCaffrey AP; Tisdale JF; Kalfa TA; Pruett-Miller SM; Tsai SQ; Weiss MJ; Liu DR
    Nature; 2021 Jul; 595(7866):295-302. PubMed ID: 34079130
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding.
    Martyn GE; Wienert B; Yang L; Shah M; Norton LJ; Burdach J; Kurita R; Nakamura Y; Pearson RCM; Funnell APW; Quinlan KGR; Crossley M
    Nat Genet; 2018 Apr; 50(4):498-503. PubMed ID: 29610478
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DNA methylation patterns of β-globin cluster in β-thalassemia patients.
    Bao X; Zuo Y; Chen D; Zhao C
    Clin Epigenetics; 2020 Dec; 12(1):187. PubMed ID: 33272312
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vivo HSPC gene therapy with base editors allows for efficient reactivation of fetal γ-globin in β-YAC mice.
    Li C; Georgakopoulou A; Mishra A; Gil S; Hawkins RD; Yannaki E; Lieber A
    Blood Adv; 2021 Feb; 5(4):1122-1135. PubMed ID: 33620431
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CRISPR/Cas9-mediated β-globin gene knockout in rabbits recapitulates human β-thalassemia.
    Yang Y; Kang X; Hu S; Chen B; Xie Y; Song B; Zhang Q; Wu H; Ou Z; Xian Y; Fan Y; Li X; Lai L; Sun X
    J Biol Chem; 2021; 296():100464. PubMed ID: 33639162
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system.
    Song B; Fan Y; He W; Zhu D; Niu X; Wang D; Ou Z; Luo M; Sun X
    Stem Cells Dev; 2015 May; 24(9):1053-65. PubMed ID: 25517294
    [TBL] [Abstract][Full Text] [Related]  

  • 52. PLGA-Nanoparticles for Intracellular Delivery of the CRISPR-Complex to Elevate Fetal Globin Expression in Erythroid Cells.
    Cruz LJ; van Dijk T; Vepris O; Li TMWY; Schomann T; Baldazzi F; Kurita R; Nakamura Y; Grosveld F; Philipsen S; Eich C
    Biomaterials; 2021 Jan; 268():120580. PubMed ID: 33321292
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice.
    Ou Z; Niu X; He W; Chen Y; Song B; Xian Y; Fan D; Tang D; Sun X
    Sci Rep; 2016 Sep; 6():32463. PubMed ID: 27581487
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CRISPR/Cas9-based multiplex genome editing of BCL11A and HBG efficiently induces fetal hemoglobin expression.
    Han Y; Tan X; Jin T; Zhao S; Hu L; Zhang W; Kurita R; Nakamura Y; Liu J; Li D; Zhang Z; Fang X; Huang S
    Eur J Pharmacol; 2022 Mar; 918():174788. PubMed ID: 35093321
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Novel Role of the B-Cell Lymphoma/Leukemia 11A (BCL11A) Gene in β-Thalassaemia Treatment.
    Mahmoud Ahmed NH; Lai MI
    Cardiovasc Hematol Disord Drug Targets; 2023; 22(4):226-236. PubMed ID: 36734897
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reactivation of Fetal Hemoglobin for Treating β-Thalassemia and Sickle Cell Disease.
    Cui S; Engel JD
    Adv Exp Med Biol; 2017; 1013():177-202. PubMed ID: 29127681
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Engineering of the endogenous
    Boontanrart MY; Mächler E; Ponta S; Nelis JC; Preiano VG; Corn JE
    Elife; 2023 Jun; 12():. PubMed ID: 37265399
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gene replacement of α-globin with β-globin restores hemoglobin balance in β-thalassemia-derived hematopoietic stem and progenitor cells.
    Cromer MK; Camarena J; Martin RM; Lesch BJ; Vakulskas CA; Bode NM; Kurgan G; Collingwood MA; Rettig GR; Behlke MA; Lemgart VT; Zhang Y; Goyal A; Zhao F; Ponce E; Srifa W; Bak RO; Uchida N; Majeti R; Sheehan VA; Tisdale JF; Dever DP; Porteus MH
    Nat Med; 2021 Apr; 27(4):677-687. PubMed ID: 33737751
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of intergenic human gamma-delta-globin sequences in human hemoglobin switching and reactivation of fetal hemoglobin in adult erythroid cells.
    Bank A; O'Neill D; Lopez R; Pulte D; Ward M; Mantha S; Richardson C
    Ann N Y Acad Sci; 2005; 1054():48-54. PubMed ID: 16339651
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lentiviral and genome-editing strategies for the treatment of β-hemoglobinopathies.
    Magrin E; Miccio A; Cavazzana M
    Blood; 2019 Oct; 134(15):1203-1213. PubMed ID: 31467062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.