BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 29519937)

  • 21. A genome-wide gene function prediction resource for Drosophila melanogaster.
    Yan H; Venkatesan K; Beaver JE; Klitgord N; Yildirim MA; Hao T; Hill DE; Cusick ME; Perrimon N; Roth FP; Vidal M
    PLoS One; 2010 Aug; 5(8):e12139. PubMed ID: 20711346
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Whole-Genome Resequencing of Experimental Populations Reveals Polygenic Basis of Egg-Size Variation in Drosophila melanogaster.
    Jha AR; Miles CM; Lippert NR; Brown CD; White KP; Kreitman M
    Mol Biol Evol; 2015 Oct; 32(10):2616-32. PubMed ID: 26044351
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The road less traveled: from genotype to phenotype in flies and humans.
    Anholt RRH; Mackay TFC
    Mamm Genome; 2018 Feb; 29(1-2):5-23. PubMed ID: 29058036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accounting for genetic architecture improves sequence based genomic prediction for a Drosophila fitness trait.
    Ober U; Huang W; Magwire M; Schlather M; Simianer H; Mackay TF
    PLoS One; 2015; 10(5):e0126880. PubMed ID: 25950439
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic basis of natural variation in body pigmentation in Drosophila melanogaster.
    Dembeck LM; Huang W; Carbone MA; Mackay TF
    Fly (Austin); 2015; 9(2):75-81. PubMed ID: 26554300
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-Wide Association Analysis of Anoxia Tolerance in
    Campbell JB; Overby PF; Gray AE; Smith HC; Harrison JF
    G3 (Bethesda); 2019 Sep; 9(9):2989-2999. PubMed ID: 31311780
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Genomic Basis of Postponed Senescence in Drosophila melanogaster.
    Carnes MU; Campbell T; Huang W; Butler DG; Carbone MA; Duncan LH; Harbajan SV; King EM; Peterson KR; Weitzel A; Zhou S; Mackay TF
    PLoS One; 2015; 10(9):e0138569. PubMed ID: 26378456
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Genetic Basis for Variation in Sensitivity to Lead Toxicity in Drosophila melanogaster.
    Zhou S; Morozova TV; Hussain YN; Luoma SE; McCoy L; Yamamoto A; Mackay TF; Anholt RR
    Environ Health Perspect; 2016 Jul; 124(7):1062-70. PubMed ID: 26859824
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimizing genomic prediction model given causal genes in a dairy cattle population.
    Teng J; Huang S; Chen Z; Gao N; Ye S; Diao S; Ding X; Yuan X; Zhang H; Li J; Zhang Z
    J Dairy Sci; 2020 Nov; 103(11):10299-10310. PubMed ID: 32952023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Testing Implications of the Omnigenic Model for the Genetic Analysis of Loci Identified through Genome-wide Association.
    Zhang W; Reeves GR; Tautz D
    Curr Biol; 2021 Mar; 31(5):1092-1098.e6. PubMed ID: 33417882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic Modifiers of Neurodegeneration in a
    Lavoy S; Chittoor-Vinod VG; Chow CY; Martin I
    Genetics; 2018 Aug; 209(4):1345-1356. PubMed ID: 29907646
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trap a gene and find out its function: toward functional genomics in Drosophila.
    Lukacsovich T; Yamamoto D
    J Neurogenet; 2001; 15(3-4):147-68. PubMed ID: 12092900
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of a Bayesian model including QTL markers increases prediction reliability when test animals are distant from the reference population.
    Ma P; Lund MS; Aamand GP; Su G
    J Dairy Sci; 2019 Aug; 102(8):7237-7247. PubMed ID: 31155255
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative trait loci for locomotor behavior in Drosophila melanogaster.
    Jordan KW; Morgan TJ; Mackay TF
    Genetics; 2006 Sep; 174(1):271-84. PubMed ID: 16783013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide screen for modifiers of Na (+) /K (+) ATPase alleles identifies critical genetic loci.
    Talsma AD; Chaves JF; LaMonaca A; Wieczorek ED; Palladino MJ
    Mol Brain; 2014 Dec; 7():89. PubMed ID: 25476251
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic and Genomic Response to Selection for Food Consumption in Drosophila melanogaster.
    Garlapow ME; Everett LJ; Zhou S; Gearhart AW; Fay KA; Huang W; Morozova TV; Arya GH; Turlapati L; St Armour G; Hussain YN; McAdams SE; Fochler S; Mackay TF
    Behav Genet; 2017 Mar; 47(2):227-243. PubMed ID: 27704301
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative genomics of starvation stress resistance in Drosophila.
    Harbison ST; Chang S; Kamdar KP; Mackay TF
    Genome Biol; 2005; 6(4):R36. PubMed ID: 15833123
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic architecture of natural variation in visual senescence in Drosophila.
    Carbone MA; Yamamoto A; Huang W; Lyman RA; Meadors TB; Yamamoto R; Anholt RR; Mackay TF
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):E6620-E6629. PubMed ID: 27791033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increased prediction accuracy using a genomic feature model including prior information on quantitative trait locus regions in purebred Danish Duroc pigs.
    Sarup P; Jensen J; Ostersen T; Henryon M; Sørensen P
    BMC Genet; 2016 Jan; 17():11. PubMed ID: 26728402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Candidate genes and thermal phenotypes: identifying ecologically important genetic variation for thermotolerance in the Australian Drosophila melanogaster cline.
    Rako L; Blacket MJ; McKechnie SW; Hoffmann AA
    Mol Ecol; 2007 Jul; 16(14):2948-57. PubMed ID: 17614909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.