These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 29520012)

  • 41. Distribution and Penetration of Intracerebroventricularly Administered 2'OMePS Oligonucleotide in the Mouse Brain.
    Casaca-Carreira J; Temel Y; Larrakoetxea I; Jahanshahi A
    Nucleic Acid Ther; 2017 Feb; 27(1):4-10. PubMed ID: 27753537
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Can Carrier-Mediated Delivery System Promote the Development of Antisense Imaging?
    Liu CB; Xu JQ; Xu BX; Zhang JM; Chen YM; Wang RM; Tian JH
    Mol Imaging Biol; 2015 Oct; 17(5):625-32. PubMed ID: 25666290
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tips to Design Effective Splice-Switching Antisense Oligonucleotides for Exon Skipping and Exon Inclusion.
    Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():79-90. PubMed ID: 30171536
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhancing Antisense Oligonucleotide-Based Therapeutic Delivery with DG9, a Versatile Cell-Penetrating Peptide.
    Haque US; Yokota T
    Cells; 2023 Oct; 12(19):. PubMed ID: 37830609
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Peptide conjugation of 2'-O-methyl phosphorothioate antisense oligonucleotides enhances cardiac uptake and exon skipping in mdx mice.
    Jirka SM; Heemskerk H; Tanganyika-de Winter CL; Muilwijk D; Pang KH; de Visser PC; Janson A; Karnaoukh TG; Vermue R; 't Hoen PA; van Deutekom JC; Aguilera B; Aartsma-Rus A
    Nucleic Acid Ther; 2014 Feb; 24(1):25-36. PubMed ID: 24320790
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Oligonucleotides targeted against a junction oncogene are made efficient by nanotechnologies.
    Maksimenko A; Malvy C; Lambert G; Bertrand JR; Fattal E; Maccario J; Couvreur P
    Pharm Res; 2003 Oct; 20(10):1565-7. PubMed ID: 14620508
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Albumin-protamine-oligonucleotide-nanoparticles as a new antisense delivery system. Part 2: cellular uptake and effect.
    Weyermann J; Lochmann D; Georgens C; Zimmer A
    Eur J Pharm Biopharm; 2005 Apr; 59(3):431-8. PubMed ID: 15760723
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Applications of antisense oligonucleotides for the treatment of inherited retinal diseases.
    Collin RW; Garanto A
    Curr Opin Ophthalmol; 2017 May; 28(3):260-266. PubMed ID: 28151748
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Advances in the Design of (Nano)Formulations for Delivery of Antisense Oligonucleotides and Small Interfering RNA: Focus on the Central Nervous System.
    Mendonça MCP; Kont A; Aburto MR; Cryan JF; O'Driscoll CM
    Mol Pharm; 2021 Apr; 18(4):1491-1506. PubMed ID: 33734715
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of multiple-turnover capability of locked nucleic acid antisense oligonucleotides in cell-free RNase H-mediated antisense reaction and in mice.
    Yamamoto T; Fujii N; Yasuhara H; Wada S; Wada F; Shigesada N; Harada-Shiba M; Obika S
    Nucleic Acid Ther; 2014 Aug; 24(4):283-90. PubMed ID: 24758560
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Drug Metabolism and Pharmacokinetics of Antisense Oligonucleotide Therapeutics: Typical Profiles, Evaluation Approaches, and Points to Consider Compared with Small Molecule Drugs.
    Takakusa H; Iwazaki N; Nishikawa M; Yoshida T; Obika S; Inoue T
    Nucleic Acid Ther; 2023 Apr; 33(2):83-94. PubMed ID: 36735616
    [TBL] [Abstract][Full Text] [Related]  

  • 52. New developments in exon skipping and splice modulation therapies for neuromuscular diseases.
    Touznik A; Lee JJ; Yokota T
    Expert Opin Biol Ther; 2014 Jun; 14(6):809-19. PubMed ID: 24620745
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Emerging Oligonucleotide Therapeutics for Rare Neuromuscular Diseases.
    Aoki Y; Wood MJA
    J Neuromuscul Dis; 2021; 8(6):869-884. PubMed ID: 34092651
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cellular delivery of antisense oligonucleotides.
    Lebedeva I; Benimetskaya L; Stein CA; Vilenchik M
    Eur J Pharm Biopharm; 2000 Jul; 50(1):101-19. PubMed ID: 10840195
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Antisense applications for biological control.
    Pan WH; Clawson GA
    J Cell Biochem; 2006 May; 98(1):14-35. PubMed ID: 16440307
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vivo restoration of dystrophin expression in mdx mice using intra-muscular and intra-arterial injections of hydrogel microsphere carriers of exon skipping antisense oligonucleotides.
    Cohen SA; Bar-Am O; Fuoco C; Saar G; Gargioli C; Seliktar D
    Cell Death Dis; 2022 Sep; 13(9):779. PubMed ID: 36085138
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Canine models for human genetic neurodegenerative diseases.
    Barsoum SC; Callahan HM; Robinson K; Chang PL
    Prog Neuropsychopharmacol Biol Psychiatry; 2000 Jul; 24(5):811-23. PubMed ID: 11191715
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Clinical trials using antisense oligonucleotides in duchenne muscular dystrophy.
    Koo T; Wood MJ
    Hum Gene Ther; 2013 May; 24(5):479-88. PubMed ID: 23521559
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Peptide-oligonucleotide hybrids in antisense therapy.
    Pierce TL; White AR; Tregear GW; Sexton PM
    Mini Rev Med Chem; 2005 Jan; 5(1):41-55. PubMed ID: 15638791
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Antisense oligonucleotide treatments for psoriasis.
    White PJ; Atley LM; Wraight CJ
    Expert Opin Biol Ther; 2004 Jan; 4(1):75-81. PubMed ID: 14680470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.