These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 29520023)

  • 1. Volcanic ash as a driver of enhanced organic carbon burial in the Cretaceous.
    Lee CA; Jiang H; Ronay E; Minisini D; Stiles J; Neal M
    Sci Rep; 2018 Mar; 8(1):4197. PubMed ID: 29520023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Late Jurassic ocean anoxic event: evidence from voluminous sulphide deposition and preservation in the Panthalassa.
    Nozaki T; Kato Y; Suzuki K
    Sci Rep; 2013; 3():1889. PubMed ID: 23712471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global change: hydrocarbon-driven warming.
    Dickens GR
    Nature; 2004 Jun; 429(6991):513-5. PubMed ID: 15175735
    [No Abstract]   [Full Text] [Related]  

  • 4. Latitudinal variations in plankton delta 13C: implications for CO2 and productivity in past oceans.
    Rau GH; Takahashi T; Des Marais DJ
    Nature; 1989 Oct; 341(6242):516-8. PubMed ID: 11536614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of evaporite deposition on Early Cretaceous carbon and sulphur cycling.
    Wortmann UG; Chernyavsky BM
    Nature; 2007 Apr; 446(7136):654-6. PubMed ID: 17410172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming.
    Svensen H; Planke S; Malthe-Sørenssen A; Jamtveit B; Myklebust R; Rasmussen Eidem T; Rey SS
    Nature; 2004 Jun; 429(6991):542-5. PubMed ID: 15175747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system.
    Galy V; France-Lanord C; Beyssac O; Faure P; Kudrass H; Palhol F
    Nature; 2007 Nov; 450(7168):407-10. PubMed ID: 18004382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling the Phanerozoic carbon cycle and climate: constraints from the 87Sr/86Sr isotopic ratio of seawater.
    François LM; Walker JC
    Am J Sci; 1992 Feb; 292(2):81-135. PubMed ID: 11537759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction.
    Them TR; Gill BC; Caruthers AH; Gerhardt AM; Gröcke DR; Lyons TW; Marroquín SM; Nielsen SG; Trabucho Alexandre JP; Owens JD
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):6596-6601. PubMed ID: 29891692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon dioxide emissions from Deccan volcanism and a K/T boundary greenhouse effect.
    Caldeira K; Rampino MR
    Geophys Res Lett; 1990 Aug; 17(9):1299-302. PubMed ID: 11538480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volcanic trigger of ocean deoxygenation during Cordilleran ice sheet retreat.
    Du J; Mix AC; Haley BA; Belanger CL; Sharon
    Nature; 2022 Nov; 611(7934):74-80. PubMed ID: 36323809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of a continuous flow method for the determination of soluble iron in atmospheric dust and volcanic ash.
    Simonella LE; Gaiero DM; Palomeque ME
    Talanta; 2014 Oct; 128():248-53. PubMed ID: 25059156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The carbon cycle and associated redox processes through time.
    Hayes JM; Waldbauer JR
    Philos Trans R Soc Lond B Biol Sci; 2006 Jun; 361(1470):931-50. PubMed ID: 16754608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly bioavailable dust-borne iron delivered to the Southern Ocean during glacial periods.
    Shoenfelt EM; Winckler G; Lamy F; Anderson RF; Bostick BC
    Proc Natl Acad Sci U S A; 2018 Oct; 115(44):11180-11185. PubMed ID: 30322933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remobilization of crustal carbon may dominate volcanic arc emissions.
    Mason E; Edmonds M; Turchyn AV
    Science; 2017 Jul; 357(6348):290-294. PubMed ID: 28729507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact.
    Pope KO; Baines KH; Ocampo AC; Ivanov BA
    J Geophys Res; 1997 Sep; 102(E9):21645-64. PubMed ID: 11541145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid model of the CO2 geochemical cycle and its application to large impact events.
    Kasting JF; Richardson SM; Pollack JB; Toon OB
    Am J Sci; 1986 May; 286(5):361-89. PubMed ID: 11542044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seafloor hydrothermal activity and spreading rates: the Eocene carbon dioxide greenhouse revisted.
    Kasting JF; Richardson SM
    Geochim Cosmochim Acta; 1985; 49():2541-4. PubMed ID: 11539654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemostratigraphic evidence of Deccan volcanism from the marine osmium isotope record.
    Ravizza G; Peucker-Ehrenbrink B
    Science; 2003 Nov; 302(5649):1392-5. PubMed ID: 14631039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple factors in the origin of the Cretaceous/Tertiary boundary: the role of environmental stress and Deccan Trap volcanism.
    Glasby GP; Kunzendorf H
    Geol Rundsch; 1996 Jun; 85(2):191-210. PubMed ID: 11543126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.