BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 29520259)

  • 1. Copy Number Variation in Fungi and Its Implications for Wine Yeast Genetic Diversity and Adaptation.
    Steenwyk JL; Rokas A
    Front Microbiol; 2018; 9():288. PubMed ID: 29520259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extensive Copy Number Variation in Fermentation-Related Genes Among
    Steenwyk J; Rokas A
    G3 (Bethesda); 2017 May; 7(5):1475-1485. PubMed ID: 28292787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential adaptation to multi-stressed conditions of wine fermentation revealed by variations in yeast regulatory networks.
    Brion C; Ambroset C; Sanchez I; Legras JL; Blondin B
    BMC Genomics; 2013 Oct; 14():681. PubMed ID: 24094006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genomics of wild type yeast strains unveils important genome diversity.
    Carreto L; Eiriz MF; Gomes AC; Pereira PM; Schuller D; Santos MA
    BMC Genomics; 2008 Nov; 9():524. PubMed ID: 18983662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single nucleotide polymorphisms associated with wine fermentation and adaptation to nitrogen limitation in wild and domesticated yeast strains.
    Kessi-Pérez EI; Acuña E; Bastías C; Fundora L; Villalobos-Cid M; Romero A; Khaiwal S; De Chiara M; Liti G; Salinas F; Martínez C
    Biol Res; 2023 Jul; 56(1):43. PubMed ID: 37507753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures.
    Dunn B; Levine RP; Sherlock G
    BMC Genomics; 2005 Apr; 6():53. PubMed ID: 15833139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae.
    Walker ME; Nguyen TD; Liccioli T; Schmid F; Kalatzis N; Sundstrom JF; Gardner JM; Jiranek V
    BMC Genomics; 2014 Jul; 15(1):552. PubMed ID: 24993029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity and adaptive evolution of Saccharomyces wine yeast: a review.
    Marsit S; Dequin S
    FEMS Yeast Res; 2015 Nov; 15(7):. PubMed ID: 26205244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting budding yeast natural variation for industrial processes.
    Cubillos FA
    Curr Genet; 2016 Nov; 62(4):745-751. PubMed ID: 27085523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic variation of the repeated MAL loci in natural populations of Saccharomyces cerevisiae and Saccharomyces paradoxus.
    Naumov GI; Naumova ES; Michels CA
    Genetics; 1994 Mar; 136(3):803-12. PubMed ID: 8005435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole genome sequencing of Canadian Saccharomyces cerevisiae strains isolated from spontaneous wine fermentations reveals a new Pacific West Coast Wine clade.
    Marr RA; Moore J; Formby S; Martiniuk JT; Hamilton J; Ralli S; Konwar K; Rajasundaram N; Hahn A; Measday V
    G3 (Bethesda); 2023 Aug; 13(8):. PubMed ID: 37307358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic Polymorphism in Wine Yeasts: Mechanisms and Methods for Its Detection.
    Guillamón JM; Barrio E
    Front Microbiol; 2017; 8():806. PubMed ID: 28522998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological diversity of Saccharomyces yeasts of spontaneously fermenting wines in four wine regions: comparative genotypic and phenotypic analysis.
    Csoma H; Zakany N; Capece A; Romano P; Sipiczki M
    Int J Food Microbiol; 2010 Jun; 140(2-3):239-48. PubMed ID: 20413169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic signatures of adaptation to wine biological ageing conditions in biofilm-forming flor yeasts.
    Coi AL; Bigey F; Mallet S; Marsit S; Zara G; Gladieux P; Galeote V; Budroni M; Dequin S; Legras JL
    Mol Ecol; 2017 Apr; 26(7):2150-2166. PubMed ID: 28192619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying and assessing the impact of wine acid-related genes in yeast.
    Chidi BS; Rossouw D; Bauer FF
    Curr Genet; 2016 Feb; 62(1):149-64. PubMed ID: 26040556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of maltose fermentation genes in the baking yeast strains of Saccharomyces cerevisiae.
    Oda Y; Tonomura K
    Lett Appl Microbiol; 1996 Oct; 23(4):266-8. PubMed ID: 8987701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation.
    Eder M; Sanchez I; Brice C; Camarasa C; Legras JL; Dequin S
    BMC Genomics; 2018 Mar; 19(1):166. PubMed ID: 29490607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of CUP1 gene copy-number and XVI-VIII/XV-XVI translocations on copper and sulfite tolerance in vineyard Saccharomyces cerevisiae strain populations.
    Crosato G; Nadai C; Carlot M; Garavaglia J; Ziegler DR; Rossi RC; De Castilhos J; Campanaro S; Treu L; Giacomini A; Corich V
    FEMS Yeast Res; 2020 Jun; 20(4):. PubMed ID: 32436567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deciphering the molecular basis of wine yeast fermentation traits using a combined genetic and genomic approach.
    Ambroset C; Petit M; Brion C; Sanchez I; Delobel P; Guérin C; Chiapello H; Nicolas P; Bigey F; Dequin S; Blondin B
    G3 (Bethesda); 2011 Sep; 1(4):263-81. PubMed ID: 22384338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of ergosterol and phytosterols on wine alcoholic fermentation with
    Girardi-Piva G; Casalta E; Legras JL; Nidelet T; Pradal M; Macna F; Ferreira D; Ortiz-Julien A; Tesnière C; Galeote V; Mouret JR
    Front Microbiol; 2022; 13():966245. PubMed ID: 36160262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.