These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29520315)

  • 1. Spatially Resolved Sensitivity of Single-Particle Plasmon Sensors.
    Beuwer MA; van Hoof B; Zijlstra P
    J Phys Chem C Nanomater Interfaces; 2018 Mar; 122(8):4615-4621. PubMed ID: 29520315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlative microscopy of single self-assembled nanorod dimers for refractometric sensing.
    Beuwer MA; Zijlstra P
    J Chem Phys; 2021 Jul; 155(4):044701. PubMed ID: 34340368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong reduction of spectral heterogeneity in gold bipyramids for single-particle and single-molecule plasmon sensing.
    Peters SM; Verheijen MA; Prins MW; Zijlstra P
    Nanotechnology; 2016 Jan; 27(2):024001. PubMed ID: 26618240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneous Kinetics in the Functionalization of Single Plasmonic Nanoparticles.
    Horáček M; Armstrong RE; Zijlstra P
    Langmuir; 2018 Jan; 34(1):131-138. PubMed ID: 29185760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical limit of localized surface plasmon resonance sensitivity to local refractive index change and its comparison to conventional surface plasmon resonance sensor.
    Zalyubovskiy SJ; Bogdanova M; Deinega A; Lozovik Y; Pris AD; An KH; Hall WP; Potyrailo RA
    J Opt Soc Am A Opt Image Sci Vis; 2012 Jun; 29(6):994-1002. PubMed ID: 22673431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intensity-Based Single Particle Plasmon Sensing.
    Celiksoy S; Ye W; Wandner K; Kaefer K; Sönnichsen C
    Nano Lett; 2021 Mar; 21(5):2053-2058. PubMed ID: 33617258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods.
    Mayer KM; Lee S; Liao H; Rostro BC; Fuentes A; Scully PT; Nehl CL; Hafner JH
    ACS Nano; 2008 Apr; 2(4):687-92. PubMed ID: 19206599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale plasmonic phase sensor.
    Wackenhut F; Jakob LA; Hauler O; Stuhl A; Laible F; Fleischer M; Braun K; Meixner AJ
    Anal Bioanal Chem; 2020 May; 412(14):3405-3411. PubMed ID: 31919613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential-Scanning Localized Surface Plasmon Resonance Sensor.
    Nishi H; Hiroya S; Tatsuma T
    ACS Nano; 2015 Jun; 9(6):6214-21. PubMed ID: 26030715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential-Scanning Localized Plasmon Sensing with Single and Coupled Gold Nanorods.
    Kawawaki T; Zhang H; Nishi H; Mulvaney P; Tatsuma T
    J Phys Chem Lett; 2017 Aug; 8(15):3637-3641. PubMed ID: 28730812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Backward-scattering-based Localized Surface Plasmon Resonance Sensors with Gold Nanospheres and Nanoshells.
    Kawawaki T; Shinjo N; Tatsuma T
    Anal Sci; 2016; 32(3):271-4. PubMed ID: 26960604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping the local particle plasmon sensitivity with a scanning probe.
    Krug MK; Schaffernak G; Belitsch M; Gašparić M; Leitgeb V; Trügler A; Hohenester U; Krenn JR; Hohenau A
    Nanoscale; 2016 Sep; 8(36):16449-54. PubMed ID: 27603414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold nanoframes: very high surface plasmon fields and excellent near-infrared sensors.
    Mahmoud MA; El-Sayed MA
    J Am Chem Soc; 2010 Sep; 132(36):12704-10. PubMed ID: 20722373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips.
    Kazuma E; Tatsuma T
    Nanoscale; 2014 Feb; 6(4):2397-405. PubMed ID: 24435010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled plasmon resonance properties of hollow gold nanosphere aggregates.
    Chandra M; Dowgiallo AM; Knappenberger KL
    J Am Chem Soc; 2010 Nov; 132(44):15782-9. PubMed ID: 20961113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Hydrostatic Pressure on the Surface Plasmon Resonance of Gold Nanocrystals.
    Martín-Sánchez C; Barreda-Argüeso JA; Seibt S; Mulvaney P; Rodríguez F
    ACS Nano; 2019 Jan; 13(1):498-504. PubMed ID: 30563343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-Optical Imaging of Gold Nanoparticle Geometry Using Super-Resolution Microscopy.
    Taylor A; Verhoef R; Beuwer M; Wang Y; Zijlstra P
    J Phys Chem C Nanomater Interfaces; 2018 Feb; 122(4):2336-2342. PubMed ID: 29422979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of nanoparticle size and cell type on high sensitivity cell detection using a localized surface plasmon resonance biosensor.
    Liu F; Wong MM; Chiu SK; Lin H; Ho JC; Pang SW
    Biosens Bioelectron; 2014 May; 55():141-8. PubMed ID: 24373953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.