BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 29520450)

  • 1. Haloarchaea from the Andean Puna: Biological Role in the Energy Metabolism of Arsenic.
    Ordoñez OF; Rasuk MC; Soria MN; Contreras M; Farías ME
    Microb Ecol; 2018 Oct; 76(3):695-705. PubMed ID: 29520450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metagenomic study of red biofilms from Diamante Lake reveals ancient arsenic bioenergetics in haloarchaea.
    Rascovan N; Maldonado J; Vazquez MP; Eugenia Farías M
    ISME J; 2016 Feb; 10(2):299-309. PubMed ID: 26140530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autotrophic microbial arsenotrophy in arsenic-rich soda lakes.
    Oremland RS; Saltikov CW; Stolz JF; Hollibaugh JT
    FEMS Microbiol Lett; 2017 Aug; 364(15):. PubMed ID: 28859313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The contribution of microbial mats to the arsenic geochemistry of an ancient gold mine.
    Drewniak L; Maryan N; Lewandowski W; Kaczanowski S; Sklodowska A
    Environ Pollut; 2012 Mar; 162():190-201. PubMed ID: 22243864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving Arsenic Tolerance of Pyrococcus furiosus by Heterologous Expression of a Respiratory Arsenate Reductase.
    Haja DK; Wu CH; Ponomarenko O; Poole FL; George GN; Adams MWW
    Appl Environ Microbiol; 2020 Oct; 86(21):. PubMed ID: 32859593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functions and Unique Diversity of Genes and Microorganisms Involved in Arsenite Oxidation from the Tailings of a Realgar Mine.
    Zeng XC; E G; Wang J; Wang N; Chen X; Mu Y; Li H; Yang Y; Liu Y; Wang Y
    Appl Environ Microbiol; 2016 Dec; 82(24):7019-7029. PubMed ID: 27663031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphate-Arsenic Interactions in Halophilic Microorganisms of the Microbial Mat from Laguna Tebenquiche: from the Microenvironment to the Genomes.
    Saona LA; Soria M; Durán-Toro V; Wörmer L; Milucka J; Castro-Nallar E; Meneses C; Contreras M; Farías ME
    Microb Ecol; 2021 May; 81(4):941-953. PubMed ID: 33388944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecophysiological Distinctions of Haloarchaea from a Hypersaline Antarctic Lake as Determined by Metaproteomics.
    Tschitschko B; Williams TJ; Allen MA; Zhong L; Raftery MJ; Cavicchioli R
    Appl Environ Microbiol; 2016 Jun; 82(11):3165-73. PubMed ID: 26994078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The controversy on the ancestral arsenite oxidizing enzyme; deducing evolutionary histories with phylogeny and thermodynamics.
    Szyttenholm J; Chaspoul F; Bauzan M; Ducluzeau AL; Chehade MH; Pierrel F; Denis Y; Nitschke W; Schoepp-Cothenet B
    Biochim Biophys Acta Bioenerg; 2020 Oct; 1861(10):148252. PubMed ID: 32569664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic identification of arsenate reductase and arsenite oxidase in redox transformations carried out by arsenic metabolising prokaryotes - A comprehensive review.
    Kumari N; Jagadevan S
    Chemosphere; 2016 Nov; 163():400-412. PubMed ID: 27565307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of anaerobic arsenite-oxidizing and arsenate-reducing bacteria associated with an alkaline saline lake in Khovsgol, Mongolia.
    Hamamura N; Itai T; Liu Y; Reysenbach AL; Damdinsuren N; Inskeep WP
    Environ Microbiol Rep; 2014 Oct; 6(5):476-82. PubMed ID: 25646538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme phylogenies as markers for the oxidation state of the environment: the case of respiratory arsenate reductase and related enzymes.
    Duval S; Ducluzeau AL; Nitschke W; Schoepp-Cothenet B
    BMC Evol Biol; 2008 Jul; 8():206. PubMed ID: 18631373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and mechanistic analysis of the arsenate respiratory reductase provides insight into environmental arsenic transformations.
    Glasser NR; Oyala PH; Osborne TH; Santini JM; Newman DK
    Proc Natl Acad Sci U S A; 2018 Sep; 115(37):E8614-E8623. PubMed ID: 30104376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox cycling of arsenic by the hydrothermal marine bacterium Marinobacter santoriniensis.
    Handley KM; Héry M; Lloyd JR
    Environ Microbiol; 2009 Jun; 11(6):1601-11. PubMed ID: 19226300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases.
    Zargar K; Conrad A; Bernick DL; Lowe TM; Stolc V; Hoeft S; Oremland RS; Stolz J; Saltikov CW
    Environ Microbiol; 2012 Jul; 14(7):1635-45. PubMed ID: 22404962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of Genes and Proteins Involved in Arsenic Respiration and Resistance in Dissimilatory Arsenate-Reducing
    Tsuchiya T; Ehara A; Kasahara Y; Hamamura N; Amachi S
    Appl Environ Microbiol; 2019 Jul; 85(14):. PubMed ID: 31101608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenics as bioenergetic substrates.
    van Lis R; Nitschke W; Duval S; Schoepp-Cothenet B
    Biochim Biophys Acta; 2013 Feb; 1827(2):176-88. PubMed ID: 22982475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Arsenate Reductase Gene (arrA) PCR Primers for Diversity Assessment and Quantification in Environmental Samples.
    Mirza BS; Sorensen DL; Dupont RR; McLean JE
    Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27913413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Arsenic Levels Increase Activity Rather than Diversity or Abundance of Arsenic Metabolism Genes in Paddy Soils.
    Zhang SY; Xiao X; Chen SC; Zhu YG; Sun GX; Konstantinidis KT
    Appl Environ Microbiol; 2021 Sep; 87(20):e0138321. PubMed ID: 34378947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular methods to detect and monitor dissimilatory arsenate-respiring bacteria (DARB) in sediments.
    Song B; Chyun E; Jaffé PR; Ward BB
    FEMS Microbiol Ecol; 2009 Apr; 68(1):108-17. PubMed ID: 19291024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.