These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 29521645)
1. Solution-processed all-oxide bulk heterojunction solar cells based on CuO nanaorod array and TiO Wu F; Qiao Q; Bahrami B; Chen K; Pathak R; Tong Y; Li X; Zhang T; Jian R Nanotechnology; 2018 May; 29(21):215403. PubMed ID: 29521645 [TBL] [Abstract][Full Text] [Related]
2. Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells. Lin YY; Chu TH; Li SS; Chuang CH; Chang CH; Su WF; Chang CP; Chu MW; Chen CW J Am Chem Soc; 2009 Mar; 131(10):3644-9. PubMed ID: 19215126 [TBL] [Abstract][Full Text] [Related]
3. Efficient Electron Collection in Hybrid Polymer Solar Cells: In-Situ-Generated ZnO/Poly(3-hexylthiophene) Scaffolded by a TiO2 Nanorod Array. Liao WP; Wu JJ J Phys Chem Lett; 2013 Jun; 4(11):1983-8. PubMed ID: 26283138 [TBL] [Abstract][Full Text] [Related]
4. Space-Charging Interfacial Layer by Illumination for Efficient Sb Liu R; Shen Z; Zhu L; Huang J; Li H; Chen J; Dong C; Chen T; Yang S; Chen C; Wang M ACS Appl Mater Interfaces; 2023 May; 15(20):24583-24594. PubMed ID: 37170934 [TBL] [Abstract][Full Text] [Related]
5. Towards high efficiency air-processed near-infrared responsive photovoltaics: bulk heterojunction solar cells based on PbS/CdS core-shell quantum dots and TiO2 nanorod arrays. Gonfa BA; Kim MR; Delegan N; Tavares AC; Izquierdo R; Wu N; El Khakani MA; Ma D Nanoscale; 2015 Jun; 7(22):10039-49. PubMed ID: 25975363 [TBL] [Abstract][Full Text] [Related]
6. Correlating interface heterostructure, charge recombination, and device efficiency of poly(3-hexyl thiophene)/TiO2 nanorod solar cell. Zeng TW; Ho CC; Tu YC; Tu GY; Wang LY; Su WF Langmuir; 2011 Dec; 27(24):15255-60. PubMed ID: 22050188 [TBL] [Abstract][Full Text] [Related]
7. Study of charge separation and interface formation in a single nanorod CdS-Cu(x)S heterojunction solar cell using Kelvin probe force microscopy. Gupta S; Batra Y; Mehta BR; Satsangi VR Nanotechnology; 2013 Jun; 24(25):255703. PubMed ID: 23708491 [TBL] [Abstract][Full Text] [Related]
8. Balanced Dipole Effects on Interfacial Engineering for Polymer/TiO Wu F; Zhu Y; Ye X; Li X; Tong Y; Xu J Nanoscale Res Lett; 2017 Dec; 12(1):85. PubMed ID: 28160184 [TBL] [Abstract][Full Text] [Related]
9. Three-Dimensional CuO/TiO Date MK; Yang LH; Yang TY; Wang KY; Su TY; Wu DC; Cheuh YL Nanoscale Res Lett; 2020 Feb; 15(1):45. PubMed ID: 32072311 [TBL] [Abstract][Full Text] [Related]
10. CuO/ZnO Heterojunction Nanorod Arrays Prepared by Photochemical Method with Improved UV Detecting Performance. Li J; Zhao T; M Shirolkar M; Li M; Wang H; Li H Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31126059 [TBL] [Abstract][Full Text] [Related]
11. TiO Li CH; Hsu CW; Lu SY J Colloid Interface Sci; 2018 Jul; 521():216-225. PubMed ID: 29571103 [TBL] [Abstract][Full Text] [Related]
12. Illumination intensity dependence of the photovoltage in nanostructured TiO2 dye-sensitized solar cells. Salvador P; Hidalgo MG; Zaban A; Bisquert J J Phys Chem B; 2005 Aug; 109(33):15915-26. PubMed ID: 16853020 [TBL] [Abstract][Full Text] [Related]
13. Effects of calcination treatment on the morphology, crystallinity, and photoelectric properties of all-solid-state dye-sensitized solar cells assembled by TiO2 nanorod arrays. Sun X; Sun Q; Li Y; Sui L; Dong L Phys Chem Chem Phys; 2013 Nov; 15(42):18716-20. PubMed ID: 24071636 [TBL] [Abstract][Full Text] [Related]
14. Comparison of photovoltaic properties of TiO2 electrodes prepared with nanoparticles and nanorods. Nam SH; Ju DW; Boo JH J Nanosci Nanotechnol; 2014 Dec; 14(12):9406-10. PubMed ID: 25971074 [TBL] [Abstract][Full Text] [Related]
15. Preparation of nanorod-like anatase TiO2 nanocrystals and their photovoltaic properties. Zhang Q; Li S; Li Y; Wang H J Nanosci Nanotechnol; 2011 Dec; 11(12):11109-13. PubMed ID: 22409066 [TBL] [Abstract][Full Text] [Related]
16. Enhancing Performance of CdS Quantum Dot-Sensitized Solar Cells by Two-Dimensional g-C Gao Q; Sun S; Li X; Zhang X; Duan L; Lü W Nanoscale Res Lett; 2016 Dec; 11(1):463. PubMed ID: 27757944 [TBL] [Abstract][Full Text] [Related]
17. A Dual Photoelectrode Photoassisted Fe-Air Battery: The Photo-Electrocatalysis Mechanism Accounting for the Improved Oxygen Evolution Reaction and Oxygen Reduction Reaction of Air Electrodes. Qian B; Zhang Y; Hou X; Bu D; Zhang K; Lan Y; Li Y; Li S; Ma T; Song XM Small; 2022 Feb; 18(7):e2103933. PubMed ID: 34862712 [TBL] [Abstract][Full Text] [Related]
18. TiO2 nanorod arrays functionalized with In2S3 shell layer by a low-cost route for solar energy conversion. Gan X; Li X; Gao X; Qiu J; Zhuge F Nanotechnology; 2011 Jul; 22(30):305601. PubMed ID: 21697580 [TBL] [Abstract][Full Text] [Related]
19. Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting. Wang W; Dong J; Ye X; Li Y; Ma Y; Qi L Small; 2016 Mar; 12(11):1469-78. PubMed ID: 26779803 [TBL] [Abstract][Full Text] [Related]
20. Photovoltaic performance of dye-sensitized solar cell low temperature growth of ZnO nanorods using chemical bath deposition. Lee JG; Choi YC; Lee DK; Ahn KS; Kim JH J Nanosci Nanotechnol; 2012 Apr; 12(4):3469-72. PubMed ID: 22849148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]