BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 29521988)

  • 1. Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens.
    Shen X; Javidi B
    Appl Opt; 2018 Mar; 57(7):B184-B189. PubMed ID: 29521988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens.
    Shen X; Wang YJ; Chen HS; Xiao X; Lin YH; Javidi B
    Opt Lett; 2015 Feb; 40(4):538-41. PubMed ID: 25680144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integral floating display systems for augmented reality.
    Hong J; Min SW; Lee B
    Appl Opt; 2012 Jun; 51(18):4201-9. PubMed ID: 22722298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 3D integral imaging optical see-through head-mounted display.
    Hua H; Javidi B
    Opt Express; 2014 Jun; 22(11):13484-91. PubMed ID: 24921542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution augmented reality 3D display with use of a lenticular lens array holographic optical element.
    Deng H; Chen C; He MY; Li JJ; Zhang HL; Wang QH
    J Opt Soc Am A Opt Image Sci Vis; 2019 Apr; 36(4):588-593. PubMed ID: 31044978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-performance integral-imaging-based light field augmented reality display using freeform optics.
    Huang H; Hua H
    Opt Express; 2018 Jun; 26(13):17578-17590. PubMed ID: 30119569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tomographic waveguide-based augmented reality display.
    Zhao N; Xiao J; Weng P; Zhang H
    Opt Express; 2024 May; 32(11):18692-18699. PubMed ID: 38859019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a Switchable AR/VR Near-eye Display with Accommodation-Vergence and Eyeglass Prescription Support.
    Xia X; Guan Y; State A; Chakravarthula P; Rathinavel K; Cham TJ; Fuchs H
    IEEE Trans Vis Comput Graph; 2019 Nov; 25(11):3114-3124. PubMed ID: 31403422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Augmented reality display system using modulated moirĂ© imaging technique.
    Lou Y; Hu J; Chen A; Wu F
    Appl Opt; 2021 Feb; 60(4):A306-A312. PubMed ID: 33690382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Augmented reality three-dimensional display with light field fusion.
    Xie S; Wang P; Sang X; Li C
    Opt Express; 2016 May; 24(11):11483-94. PubMed ID: 27410076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integral three-dimensional image capture equipment with closely positioned lens array and image sensor.
    Arai J; Yamashita T; Miura M; Hiura H; Okaichi N; Okano F; Funatsu R
    Opt Lett; 2013 Jun; 38(12):2044-6. PubMed ID: 23938971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens.
    Wang YJ; Shen X; Lin YH; Javidi B
    Opt Lett; 2015 Aug; 40(15):3564-7. PubMed ID: 26258358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic integral imaging display with electrically moving array lenslet technique using liquid crystal lens.
    Jen TH; Shen X; Yao G; Huang YP; Shieh HP; Javidi B
    Opt Express; 2015 Jul; 23(14):18415-21. PubMed ID: 26191899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of an optical see-through light-field near-eye display using a discrete lenslet array.
    Yao C; Cheng D; Yang T; Wang Y
    Opt Express; 2018 Jul; 26(14):18292-18301. PubMed ID: 30114010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality.
    Hong K; Yeom J; Jang C; Hong J; Lee B
    Opt Lett; 2014 Jan; 39(1):127-30. PubMed ID: 24365839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depth plane adaptive integral imaging system using a vari-focal liquid lens array for realizing augmented reality.
    Shin D; Kim C; Koo G; Hyub Won Y
    Opt Express; 2020 Feb; 28(4):5602-5616. PubMed ID: 32121777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A flipping-free 3D integral imaging display using a twice-imaging lens array.
    Zhang W; Sang X; Gao X; Yu X; Gao C; Yan B; Yu C
    Opt Express; 2019 Oct; 27(22):32810-32822. PubMed ID: 31684486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation.
    Wang J; Suenaga H; Liao H; Hoshi K; Yang L; Kobayashi E; Sakuma I
    Comput Med Imaging Graph; 2015 Mar; 40():147-59. PubMed ID: 25465067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-depth augmented reality display with reflective polarization-dependent lenses.
    Li Y; Yang Q; Xiong J; Li K; Wu ST
    Opt Express; 2021 Sep; 29(20):31478-31487. PubMed ID: 34615239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orthoscopic elemental image synthesis for 3D light field display using lens design software and real-world captured neural radiance field.
    Rabia S; Allain G; Tremblay R; Thibault S
    Opt Express; 2024 Feb; 32(5):7800-7815. PubMed ID: 38439452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.