These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29522092)

  • 1. Neuronal Origin of the Temporal Dynamics of Spontaneous BOLD Activity Correlation.
    Matsui T; Murakami T; Ohki K
    Cereb Cortex; 2019 Apr; 29(4):1496-1508. PubMed ID: 29522092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the impact of neurovascular coupling impairments on BOLD-based functional connectivity at rest.
    Archila-Meléndez ME; Sorg C; Preibisch C
    Neuroimage; 2020 Sep; 218():116871. PubMed ID: 32335261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest.
    Leonardi N; Richiardi J; Gschwind M; Simioni S; Annoni JM; Schluep M; Vuilleumier P; Van De Ville D
    Neuroimage; 2013 Dec; 83():937-50. PubMed ID: 23872496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient neuronal coactivations embedded in globally propagating waves underlie resting-state functional connectivity.
    Matsui T; Murakami T; Ohki K
    Proc Natl Acad Sci U S A; 2016 Jun; 113(23):6556-61. PubMed ID: 27185944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of global signal regression on characterizing dynamic functional connectivity and brain states.
    Xu H; Su J; Qin J; Li M; Zeng LL; Hu D; Shen H
    Neuroimage; 2018 Jun; 173():127-145. PubMed ID: 29476914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macroscale variation in resting-state neuronal activity and connectivity assessed by simultaneous calcium imaging, hemodynamic imaging and electrophysiology.
    Murphy MC; Chan KC; Kim SG; Vazquez AL
    Neuroimage; 2018 Apr; 169():352-362. PubMed ID: 29277650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpreting temporal fluctuations in resting-state functional connectivity MRI.
    Liégeois R; Laumann TO; Snyder AZ; Zhou J; Yeo BTT
    Neuroimage; 2017 Dec; 163():437-455. PubMed ID: 28916180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiologically informed dynamic causal modeling of fMRI data.
    Havlicek M; Roebroeck A; Friston K; Gardumi A; Ivanov D; Uludag K
    Neuroimage; 2015 Nov; 122():355-72. PubMed ID: 26254113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between BOLD and neural activity arises from temporally sparse events.
    Zhang X; Pan WJ; Keilholz SD
    Neuroimage; 2020 Feb; 207():116390. PubMed ID: 31785420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reveal Consistent Spatial-Temporal Patterns from Dynamic Functional Connectivity for Autism Spectrum Disorder Identification.
    Zhu Y; Zhu X; Zhang H; Gao W; Shen D; Wu G
    Med Image Comput Comput Assist Interv; 2016 Oct; 9900():106-114. PubMed ID: 28149963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereotypical modulations in dynamic functional connectivity explained by changes in BOLD variance.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2018 May; 171():40-54. PubMed ID: 29294385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons.
    Ma Y; Shaik MA; Kozberg MG; Kim SH; Portes JP; Timerman D; Hillman EM
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):E8463-E8471. PubMed ID: 27974609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sliding-window analysis tracks fluctuations in amygdala functional connectivity associated with physiological arousal and vigilance during fear conditioning.
    Baczkowski BM; Johnstone T; Walter H; Erk S; Veer IM
    Neuroimage; 2017 Jun; 153():168-178. PubMed ID: 28300639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Postnatal Expansion of Neural Networks Occurs in an Environment of Altered Neurovascular and Neurometabolic Coupling.
    Kozberg MG; Ma Y; Shaik MA; Kim SH; Hillman EM
    J Neurosci; 2016 Jun; 36(25):6704-17. PubMed ID: 27335402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective Connectivity Measured Using Optogenetically Evoked Hemodynamic Signals Exhibits Topography Distinct from Resting State Functional Connectivity in the Mouse.
    Bauer AQ; Kraft AW; Baxter GA; Wright PW; Reisman MD; Bice AR; Park JJ; Bruchas MR; Snyder AZ; Lee JM; Culver JP
    Cereb Cortex; 2018 Jan; 28(1):370-386. PubMed ID: 29136125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing spatiotemporal variability of brain spontaneous activity by multiscale entropy and functional connectivity.
    Liu M; Song C; Liang Y; Knöpfel T; Zhou C
    Neuroimage; 2019 Sep; 198():198-220. PubMed ID: 31091474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient brain-wide coactivations and structured transitions revealed in hemodynamic imaging data.
    Khan AF; Zhang F; Shou G; Yuan H; Ding L
    Neuroimage; 2022 Oct; 260():119460. PubMed ID: 35868615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of brain functional connectivity from hypercapnia BOLD MRI data: Validation in a lifespan cohort of 170 subjects.
    Hou X; Liu P; Gu H; Chan M; Li Y; Peng SL; Wig G; Yang Y; Park D; Lu H
    Neuroimage; 2019 Feb; 186():455-463. PubMed ID: 30463025
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.