These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 29522151)

  • 1. Which are the major players, canonical or non-canonical strigolactones?
    Yoneyama K; Xie X; Yoneyama K; Kisugi T; Nomura T; Nakatani Y; Akiyama K; McErlean CSP
    J Exp Bot; 2018 Apr; 69(9):2231-2239. PubMed ID: 29522151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and activity of strigolactones: new plant hormones with a rich future.
    Zwanenburg B; Pospísil T
    Mol Plant; 2013 Jan; 6(1):38-62. PubMed ID: 23204499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of carlactone to carlactonoic acid is a conserved function of MAX1 homologs in strigolactone biosynthesis.
    Yoneyama K; Mori N; Sato T; Yoda A; Xie X; Okamoto M; Iwanaga M; Ohnishi T; Nishiwaki H; Asami T; Yokota T; Akiyama K; Yoneyama K; Nomura T
    New Phytol; 2018 Jun; 218(4):1522-1533. PubMed ID: 29479714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for species-dependent biosynthetic pathways for converting carlactone to strigolactones in plants.
    Iseki M; Shida K; Kuwabara K; Wakabayashi T; Mizutani M; Takikawa H; Sugimoto Y
    J Exp Bot; 2018 Apr; 69(9):2305-2318. PubMed ID: 29294064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural diversity in the strigolactones.
    Wang Y; Bouwmeester HJ
    J Exp Bot; 2018 Apr; 69(9):2219-2230. PubMed ID: 29522118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro.
    Abe S; Sado A; Tanaka K; Kisugi T; Asami K; Ota S; Kim HI; Yoneyama K; Xie X; Ohnishi T; Seto Y; Yamaguchi S; Akiyama K; Yoneyama K; Nomura T
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):18084-9. PubMed ID: 25425668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of 6-epi-heliolactone as a biosynthetic precursor of avenaol in Avena strigosa.
    Moriyama D; Wakabayashi T; Shiotani N; Yamamoto S; Furusato Y; Yabe K; Mizutani M; Takikawa H; Sugimoto Y
    Biosci Biotechnol Biochem; 2022 Jul; 86(8):998-1003. PubMed ID: 35561745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereospecificity in strigolactone biosynthesis and perception.
    Flematti GR; Scaffidi A; Waters MT; Smith SM
    Planta; 2016 Jun; 243(6):1361-73. PubMed ID: 27105887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strigolactones: new plant hormones in the spotlight.
    Zwanenburg B; Blanco-Ania D
    J Exp Bot; 2018 Apr; 69(9):2205-2218. PubMed ID: 29385517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Requirements of Strigolactones for Shoot Branching Inhibition in Rice and Arabidopsis.
    Umehara M; Cao M; Akiyama K; Akatsu T; Seto Y; Hanada A; Li W; Takeda-Kamiya N; Morimoto Y; Yamaguchi S
    Plant Cell Physiol; 2015 Jun; 56(6):1059-72. PubMed ID: 25713176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The strigolactone story.
    Xie X; Yoneyama K; Yoneyama K
    Annu Rev Phytopathol; 2010; 48():93-117. PubMed ID: 20687831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methyl phenlactonoates are efficient strigolactone analogs with simple structure.
    Jamil M; Kountche BA; Haider I; Guo X; Ntui VO; Jia KP; Ali S; Hameed US; Nakamura H; Lyu Y; Jiang K; Hirabayashi K; Tanokura M; Arold ST; Asami T; Al-Babili S
    J Exp Bot; 2018 Apr; 69(9):2319-2331. PubMed ID: 29300919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strigolactones in Rhizosphere Communication: Multiple Molecules With Diverse Functions.
    Kee YJ; Ogawa S; Ichihashi Y; Shirasu K; Yoshida S
    Plant Cell Physiol; 2023 Sep; 64(9):955-966. PubMed ID: 37279572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carlactone-type strigolactones and their synthetic analogues as inducers of hyphal branching in arbuscular mycorrhizal fungi.
    Mori N; Nishiuma K; Sugiyama T; Hayashi H; Akiyama K
    Phytochemistry; 2016 Oct; 130():90-8. PubMed ID: 27264641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in strigolactone research: chemical and biological aspects.
    Seto Y; Kameoka H; Yamaguchi S; Kyozuka J
    Plant Cell Physiol; 2012 Nov; 53(11):1843-53. PubMed ID: 23054391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strigolactones: new plant hormones in action.
    Zwanenburg B; Pospíšil T; Ćavar Zeljković S
    Planta; 2016 Jun; 243(6):1311-26. PubMed ID: 26838034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strigolactones: structures and biological activities.
    Yoneyama K; Xie X; Yoneyama K; Takeuchi Y
    Pest Manag Sci; 2009 May; 65(5):467-70. PubMed ID: 19222028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the outside looking in: roles of endogenous and exogenous strigolactones.
    Aquino B; Bradley JM; Lumba S
    Plant J; 2021 Jan; 105(2):322-334. PubMed ID: 33215770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-activity relationships of strigolactones via a novel, quantitative in planta bioassay.
    Sanchez E; Artuso E; Lombardi C; Visentin I; Lace B; Saeed W; Lolli ML; Kobauri P; Ali Z; Spyrakis F; Cubas P; Cardinale F; Prandi C
    J Exp Bot; 2018 Apr; 69(9):2333-2343. PubMed ID: 29554337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strigolactones cross the kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis.
    Lanfranco L; Fiorilli V; Venice F; Bonfante P
    J Exp Bot; 2018 Apr; 69(9):2175-2188. PubMed ID: 29309622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.