These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 29522408)

  • 1. Improving Acoustic Models in TORGO Dysarthric Speech Database.
    Joy NM; Umesh S
    IEEE Trans Neural Syst Rehabil Eng; 2018 Mar; 26(3):637-645. PubMed ID: 29522408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regularized Speaker Adaptation of KL-HMM for Dysarthric Speech Recognition.
    Kim M; Kim Y; Yoo J; Wang J; Kim H
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1581-1591. PubMed ID: 28320669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of phoneme-specific HMM topologies for the automatic recognition of dysarthric speech.
    Caballero-Morales SO
    Comput Math Methods Med; 2013; 2013():297860. PubMed ID: 24222784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Representation Learning Based Speech Assistive System for Persons With Dysarthria.
    Chandrakala S; Rajeswari N
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1510-1517. PubMed ID: 27992342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vocal tract representation in the recognition of cerebral palsied speech.
    Rudzicz F; Hirst G; van Lieshout P
    J Speech Lang Hear Res; 2012 Aug; 55(4):1190-207. PubMed ID: 22271873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Weighted Speaker-Specific Confusion Transducer-Based Augmentative and Alternative Speech Communication Aid for Dysarthric Speakers.
    Mariya Celin TA; Anushiya Rachel G; Nagarajan T; Vijayalakshmi P
    IEEE Trans Neural Syst Rehabil Eng; 2019 Feb; 27(2):187-197. PubMed ID: 30571643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histogram of States Based Assistive System for Speech Impairment Due to Neurological Disorders.
    Chandrakala S; Malini S; Veni SV
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2425-2434. PubMed ID: 34735346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of an HMM/ANN hybrid structure in pattern recognition application using cepstral analysis of dysarthric (distorted) speech signals.
    Polur PD; Miller GE
    Med Eng Phys; 2006 Oct; 28(8):741-8. PubMed ID: 16359906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated Dysarthria Severity Classification: A Study on Acoustic Features and Deep Learning Techniques.
    Joshy AA; Rajan R
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1147-1157. PubMed ID: 35452390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of high-frequency spectral components in computer recognition of dysarthric speech based on a Mel-cepstral stochastic model.
    Polur PD; Miller GE
    J Rehabil Res Dev; 2005; 42(3):363-71. PubMed ID: 16187248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dysarthric Speech Transformer: A Sequence-to-Sequence Dysarthric Speech Recognition System.
    Shahamiri SR; Lal V; Shah D
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3407-3416. PubMed ID: 37603475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speech Vision: An End-to-End Deep Learning-Based Dysarthric Automatic Speech Recognition System.
    Shahamiri SR
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():852-861. PubMed ID: 33929963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic speech recognition and training for severely dysarthric users of assistive technology: the STARDUST project.
    Parker M; Cunningham S; Enderby P; Hawley M; Green P
    Clin Linguist Phon; 2006; 20(2-3):149-56. PubMed ID: 16428231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-Stage Audio-Visual Fusion for Dysarthric Speech Recognition With Pre-Trained Models.
    Yu C; Su X; Qian Z
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():1912-1921. PubMed ID: 37030692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple ANN Recognizers for Adaptive Recognition of the Speech of Dysarthric Patients in AAL Systems.
    Nagy G; Kutor L
    Stud Health Technol Inform; 2015; 217():1013-6. PubMed ID: 26294603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Communication support through multimodal supplementation: a scoping review.
    Hanson EK; Beukelman DR; Yorkston KM
    Augment Altern Commun; 2013 Dec; 29(4):310-21. PubMed ID: 24229335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A speech-controlled environmental control system for people with severe dysarthria.
    Hawley MS; Enderby P; Green P; Cunningham S; Brownsell S; Carmichael J; Parker M; Hatzis A; O'Neill P; Palmer R
    Med Eng Phys; 2007 Jun; 29(5):586-93. PubMed ID: 17049905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a speech recognition prototype for speakers with moderate and severe dysarthria: a preliminary report.
    Fager SK; Beukelman DR; Jakobs T; Hosom JP
    Augment Altern Commun; 2010 Dec; 26(4):267-77. PubMed ID: 21091303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment issues in severe dysarthria: comments on Simpson, Till & Goff.
    Frumkin JR; Cohen CG
    J Speech Hear Disord; 1990 May; 55(2):364-5. PubMed ID: 2139483
    [No Abstract]   [Full Text] [Related]  

  • 20. A joint-feature learning-based voice conversion system for dysarthric user based on deep learning technology.
    Chen KC; Yeh HW; Hang JY; Jhang SH; Zheng WZ; Lai YH
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1838-1841. PubMed ID: 31946255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.