These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29522422)

  • 21. Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics.
    Qi J; Lan YW; Stieg AZ; Chen JH; Zhong YL; Li LJ; Chen CD; Zhang Y; Wang KL
    Nat Commun; 2015 Jun; 6():7430. PubMed ID: 26109177
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biological cells and coupled electro-mechanical effects: The role of organelles, microtubules, and nonlocal contributions.
    Singh S; Krishnaswamy JA; Melnik R
    J Mech Behav Biomed Mater; 2020 Oct; 110():103859. PubMed ID: 32957179
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineered piezoelectricity in graphene.
    Ong MT; Reed EJ
    ACS Nano; 2012 Feb; 6(2):1387-94. PubMed ID: 22196055
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flexoelectric and piezoelectric effects in micro- and nanocellulose films.
    Trellu H; Le Scornec J; Leray N; Moreau C; Villares A; Cathala B; Guiffard B
    Carbohydr Polym; 2023 Dec; 321():121305. PubMed ID: 37739535
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dipolar polarization and piezoelectricity of a hexagonal boron nitride sheet decorated with hydrogen and fluorine.
    Noor-A-Alam M; Kim HJ; Shin YH
    Phys Chem Chem Phys; 2014 Apr; 16(14):6575-82. PubMed ID: 24569610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tuning the Pseudospin Polarization of Graphene by a Pseudomagnetic Field.
    Georgi A; Nemes-Incze P; Carrillo-Bastos R; Faria D; Viola Kusminskiy S; Zhai D; Schneider M; Subramaniam D; Mashoff T; Freitag NM; Liebmann M; Pratzer M; Wirtz L; Woods CR; Gorbachev RV; Cao Y; Novoselov KS; Sandler N; Morgenstern M
    Nano Lett; 2017 Apr; 17(4):2240-2245. PubMed ID: 28211276
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Directly Observing the Evolution of Flexoelectricity at the Tip of Nanocracks.
    Xu M; Tian X; Deng Q; Li Q; Shen S
    Nano Lett; 2023 Jan; 23(1):66-72. PubMed ID: 36576300
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical writing of ferroelectric polarization.
    Lu H; Bark CW; Esque de los Ojos D; Alcala J; Eom CB; Catalan G; Gruverman A
    Science; 2012 Apr; 336(6077):59-61. PubMed ID: 22491848
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Giant Iontronic Flexoelectricity in Soft Hydrogels Induced by Tunable Biomimetic Ion Polarization.
    Jia L; Li L; Guo ZH; Sun H; Huang H; Sun F; Wang ZL; Pu X
    Adv Mater; 2024 Aug; 36(31):e2403830. PubMed ID: 38848548
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advancements and Prospects of Flexoelectricity.
    Xia Y; Qian W; Yang Y
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):9597-9613. PubMed ID: 38357861
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantification of flexoelectricity in PbTiO
    Li Q; Nelson CT; Hsu SL; Damodaran AR; Li LL; Yadav AK; McCarter M; Martin LW; Ramesh R; Kalinin SV
    Nat Commun; 2017 Nov; 8(1):1468. PubMed ID: 29133906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexoelectricity in Carbon Nanostructures: Nanotubes, Fullerenes, and Nanocones.
    Kvashnin AG; Sorokin PB; Yakobson BI
    J Phys Chem Lett; 2015 Jul; 6(14):2740-4. PubMed ID: 26266856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flexoelectricity in two-dimensional crystalline and biological membranes.
    Ahmadpoor F; Sharma P
    Nanoscale; 2015 Oct; 7(40):16555-70. PubMed ID: 26399878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flexoelectricity in Monolayer Transition Metal Dichalcogenides.
    Shi W; Guo Y; Zhang Z; Guo W
    J Phys Chem Lett; 2018 Dec; 9(23):6841-6846. PubMed ID: 30449097
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Defect Engineering of Lead-Free Piezoelectrics with High Piezoelectric Properties and Temperature-Stability.
    Feng Y; Li WL; Xu D; Qiao YL; Yu Y; Zhao Y; Fei WD
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9231-41. PubMed ID: 27010869
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recovery from mechanical degradation of graphene by defect enlargement.
    Zheng B; Gu GX
    Nanotechnology; 2019 Nov; 31(8):085707. PubMed ID: 31683264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Piezoelectricity in Multilayer Black Phosphorus for Piezotronics and Nanogenerators.
    Ma W; Lu J; Wan B; Peng D; Xu Q; Hu G; Peng Y; Pan C; Wang ZL
    Adv Mater; 2020 Feb; 32(7):e1905795. PubMed ID: 31930641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of magnesium ions with pristine single-layer and defected graphene/water interfaces studied by second harmonic generation.
    Achtyl JL; Vlassiouk IV; Surwade SP; Fulvio PF; Dai S; Geiger FM
    J Phys Chem B; 2014 Jul; 118(28):7739-49. PubMed ID: 24517192
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Effect of Micro-Inertia and Flexoelectricity on Love Wave Propagation in Layered Piezoelectric Structures.
    Hrytsyna O; Sladek J; Sladek V
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impart of Heterogeneous Charge Polarization and Distribution on Friction at Water-Graphene Interfaces: a Density-Functional-Theory based Machine Learning Study.
    Li H; Guo W; Guo Y
    J Phys Chem Lett; 2024 Jun; 15(25):6585-6591. PubMed ID: 38885449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.