These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 29522478)

  • 1. Marine Spongin: Naturally Prefabricated 3D Scaffold-Based Biomaterial.
    Jesionowski T; Norman M; Żółtowska-Aksamitowska S; Petrenko I; Joseph Y; Ehrlich H
    Mar Drugs; 2018 Mar; 16(3):. PubMed ID: 29522478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collagens of Poriferan Origin.
    Ehrlich H; Wysokowski M; Żółtowska-Aksamitowska S; Petrenko I; Jesionowski T
    Mar Drugs; 2018 Mar; 16(3):. PubMed ID: 29510493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creation of a 3D Goethite-Spongin Composite Using an Extreme Biomimetics Approach.
    Kubiak A; Voronkina A; Pajewska-Szmyt M; Kotula M; Leśniewski B; Ereskovsky A; Heimler K; Rogoll A; Vogt C; Rahimi P; Falahi S; Galli R; Langer E; Förste M; Charitos A; Joseph Y; Ehrlich H; Jesionowski T
    Biomimetics (Basel); 2023 Nov; 8(7):. PubMed ID: 37999174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Naturally prefabricated 3D chitinous skeletal scaffold of marine demosponge origin, biomineralized ex vivo as a functional biomaterial.
    Machałowski T; Idaszek J; Chlanda A; Heljak M; Piasecki A; Święszkowski W; Jesionowski T
    Carbohydr Polym; 2022 Jan; 275():118750. PubMed ID: 34742446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First Report on Chitin in a Non-Verongiid Marine Demosponge: The Mycale euplectellioides Case.
    Żółtowska-Aksamitowska S; Shaala LA; Youssef DTA; Elhady SS; Tsurkan MV; Petrenko I; Wysokowski M; Tabachnick K; Meissner H; Ivanenko VN; Bechmann N; Joseph Y; Jesionowski T; Ehrlich H
    Mar Drugs; 2018 Feb; 16(2):. PubMed ID: 29461501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extreme biomimetics: Preservation of molecular detail in centimeter-scale samples of biological meshes laid down by sponges.
    Petrenko I; Summers AP; Simon P; Żółtowska-Aksamitowska S; Motylenko M; Schimpf C; Rafaja D; Roth F; Kummer K; Brendler E; Pokrovsky OS; Galli R; Wysokowski M; Meissner H; Niederschlag E; Joseph Y; Molodtsov S; Ereskovsky A; Sivkov V; Nekipelov S; Petrova O; Volkova O; Bertau M; Kraft M; Rogalev A; Kopani M; Jesioniowski T; Ehrlich H
    Sci Adv; 2019 Oct; 5(10):eaax2805. PubMed ID: 31620556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Naturally Prefabricated Marine Biomaterials: Isolation and Applications of Flat Chitinous 3D Scaffolds from
    Schubert M; Binnewerg B; Voronkina A; Muzychka L; Wysokowski M; Petrenko I; Kovalchuk V; Tsurkan M; Martinovic R; Bechmann N; Ivanenko VN; Fursov A; Smolii OB; Fromont J; Joseph Y; Bornstein SR; Giovine M; Erpenbeck D; Guan K; Ehrlich H
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31618840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization of Titanium(IV) Oxide onto 3D Spongin Scaffolds of Marine Sponge Origin According to Extreme Biomimetics Principles for Removal of C.I. Basic Blue 9.
    Szatkowski T; Siwińska-Stefańska K; Wysokowski M; Stelling AL; Joseph Y; Ehrlich H; Jesionowski T
    Biomimetics (Basel); 2017 Mar; 2(2):. PubMed ID: 31105167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Spongin Scaffolds as Templates for Electro-Assisted Deposition of Selected Iron Oxides.
    Nowacki K; Kubiak A; Nowicki M; Tsurkan D; Ehrlich H; Jesionowski T
    Biomimetics (Basel); 2024 Jun; 9(7):. PubMed ID: 39056828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spongin as a Unique 3D Template for the Development of Functional Iron-Based Composites Using Biomimetic Approach In Vitro.
    Kubiak A; Pajewska-Szmyt M; Kotula M; Leśniewski B; Voronkina A; Rahimi P; Falahi S; Heimler K; Rogoll A; Vogt C; Ereskovsky A; Simon P; Langer E; Springer A; Förste M; Charitos A; Joseph Y; Jesionowski T; Ehrlich H
    Mar Drugs; 2023 Aug; 21(9):. PubMed ID: 37755073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of Collagen from Marine Sponges (Spongin) into Hydroxyapatite Samples: Characterization and In Vitro Biological Evaluation.
    Parisi JR; Fernandes KR; Avanzi IR; Dorileo BP; Santana AF; Andrade AL; Gabbai-Armelin PR; Fortulan CA; Trichês ES; Granito RN; Renno ACM
    Mar Biotechnol (NY); 2019 Feb; 21(1):30-37. PubMed ID: 30218326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marine spongin incorporation into Biosilicate® for tissue engineering applications: An in vivo study.
    Parisi JR; Fernandes KR; Aparecida do Vale GC; de França Santana A; de Almeida Cruz M; Fortulan CA; Zanotto ED; Peitl O; Granito RN; Rennó ACM
    J Biomater Appl; 2020 Aug; 35(2):205-214. PubMed ID: 32362163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomaterials Based on Marine Resources for 3D Bioprinting Applications.
    Zhang Y; Zhou D; Chen J; Zhang X; Li X; Zhao W; Xu T
    Mar Drugs; 2019 Sep; 17(10):. PubMed ID: 31569366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural marine sponges for bone tissue engineering: The state of art and future perspectives.
    Granito RN; Custódio MR; Rennó ACM
    J Biomed Mater Res B Appl Biomater; 2017 Aug; 105(6):1717-1727. PubMed ID: 27163295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering.
    Ko HF; Sfeir C; Kumta PN
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1917):1981-97. PubMed ID: 20308112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural marine sponge fiber skeleton: a biomimetic scaffold for human osteoprogenitor cell attachment, growth, and differentiation.
    Green D; Howard D; Yang X; Kelly M; Oreffo RO
    Tissue Eng; 2003 Dec; 9(6):1159-66. PubMed ID: 14670103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marine Collagen as A Promising Biomaterial for Biomedical Applications.
    Lim YS; Ok YJ; Hwang SY; Kwak JY; Yoon S
    Mar Drugs; 2019 Aug; 17(8):. PubMed ID: 31405173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silk Fibroin as a Functional Biomaterial for Tissue Engineering.
    Sun W; Gregory DA; Tomeh MA; Zhao X
    Int J Mol Sci; 2021 Feb; 22(3):. PubMed ID: 33540895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties.
    Moroni L; de Wijn JR; van Blitterswijk CA
    Biomaterials; 2006 Mar; 27(7):974-85. PubMed ID: 16055183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic Graphene/Spongin Scaffolds for Improved Osteoblasts Bioactivity via Dynamic Mechanical Stimulation.
    Semitela Â; Carvalho S; Fernandes C; Pinto S; Fateixa S; Nogueira HIS; Bdikin I; Completo A; Marques PAAP; Gonçalves G
    Macromol Biosci; 2022 Jan; 22(1):e2100311. PubMed ID: 34610190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.