These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

777 related articles for article (PubMed ID: 29522506)

  • 1. ChromoTrace: Computational reconstruction of 3D chromosome configurations for super-resolution microscopy.
    Barton C; Morganella S; Ødegård-Fougner Ø; Alexander S; Ries J; Fitzgerald T; Ellenberg J; Birney E
    PLoS Comput Biol; 2018 Mar; 14(3):e1006002. PubMed ID: 29522506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing novel methods to image and visualize 3D genomes.
    Ma T; Chen L; Shi M; Niu J; Zhang X; Yang X; Zhanghao K; Wang M; Xi P; Jin D; Zhang M; Gao J
    Cell Biol Toxicol; 2018 Oct; 34(5):367-380. PubMed ID: 29577183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracing DNA paths and RNA profiles in cultured cells and tissues with ORCA.
    Mateo LJ; Sinnott-Armstrong N; Boettiger AN
    Nat Protoc; 2021 Mar; 16(3):1647-1713. PubMed ID: 33619390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analyses of the 3D nuclear landscape recorded with super-resolved fluorescence microscopy.
    Schmid VJ; Cremer M; Cremer T
    Methods; 2017 Jul; 123():33-46. PubMed ID: 28323041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vivo and In Situ Replication Labeling Methods for Super-resolution Structured Illumination Microscopy of Chromosome Territories and Chromatin Domains.
    Miron E; Innocent C; Heyde S; Schermelleh L
    Methods Mol Biol; 2016; 1431():127-40. PubMed ID: 27283306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Higher-Order Chromatin Organization Using 3D DNA Fluorescent In Situ Hybridization.
    Szabo Q; Cavalli G; Bantignies F
    Methods Mol Biol; 2021; 2157():221-237. PubMed ID: 32820407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Super-resolution microscopy approaches to nuclear nanostructure imaging.
    Cremer C; Szczurek A; Schock F; Gourram A; Birk U
    Methods; 2017 Jul; 123():11-32. PubMed ID: 28390838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture.
    Markaki Y; Smeets D; Fiedler S; Schmid VJ; Schermelleh L; Cremer T; Cremer M
    Bioessays; 2012 May; 34(5):412-26. PubMed ID: 22508100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light optical precision measurements of the active and inactive Prader-Willi syndrome imprinted regions in human cell nuclei.
    Rauch J; Knoch TA; Solovei I; Teller K; Stein S; Buiting K; Horsthemke B; Langowski J; Cremer T; Hausmann M; Cremer C
    Differentiation; 2008 Jan; 76(1):66-82. PubMed ID: 18039333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Super-resolution imaging of a 2.5 kb non-repetitive DNA
    Ni Y; Cao B; Ma T; Niu G; Huo Y; Huang J; Chen D; Liu Y; Yu B; Zhang MQ; Niu H
    Elife; 2017 May; 6():. PubMed ID: 28485713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Super-resolution microscopy with DNA-PAINT.
    Schnitzbauer J; Strauss MT; Schlichthaerle T; Schueder F; Jungmann R
    Nat Protoc; 2017 Jun; 12(6):1198-1228. PubMed ID: 28518172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-Scale Imaging of the 3D Organization and Transcriptional Activity of Chromatin.
    Su JH; Zheng P; Kinrot SS; Bintu B; Zhuang X
    Cell; 2020 Sep; 182(6):1641-1659.e26. PubMed ID: 32822575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of axial tomographic high resolution data from confocal fluorescence microscopy: a method for improving 3D FISH images.
    Heintzmann R; Kreth G; Cremer C
    Anal Cell Pathol; 2000; 20(1):7-15. PubMed ID: 11007433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH).
    Solovei I; Cavallo A; Schermelleh L; Jaunin F; Scasselati C; Cmarko D; Cremer C; Fakan S; Cremer T
    Exp Cell Res; 2002 May; 276(1):10-23. PubMed ID: 11978004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualizing Genome Reorganization Using 3D DNA FISH.
    Jubb A; Boyle S
    Methods Mol Biol; 2020; 2148():85-95. PubMed ID: 32394376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards mapping the 3D genome through high speed single-molecule tracking of functional transcription factors in single living cells.
    Wollman AJM; Hedlund EG; Shashkova S; Leake MC
    Methods; 2020 Jan; 170():82-89. PubMed ID: 31252059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy.
    Huang B; Wang W; Bates M; Zhuang X
    Science; 2008 Feb; 319(5864):810-3. PubMed ID: 18174397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome organization in the human sperm nucleus studied by FISH and confocal microscopy.
    Hazzouri M; Rousseaux S; Mongelard F; Usson Y; Pelletier R; Faure AK; Vourc'h C; Sèle B
    Mol Reprod Dev; 2000 Mar; 55(3):307-15. PubMed ID: 10657050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.