These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 29522804)

  • 1. Molecular Dynamics simulations of the Strings and Binders Switch model of chromatin.
    Annunziatella C; Chiariello AM; Esposito A; Bianco S; Fiorillo L; Nicodemi M
    Methods; 2018 Jun; 142():81-88. PubMed ID: 29522804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inference of chromosome 3D structures from GAM data by a physics computational approach.
    Fiorillo L; Bianco S; Chiariello AM; Barbieri M; Esposito A; Annunziatella C; Conte M; Corrado A; Prisco A; Pombo A; Nicodemi M
    Methods; 2020 Oct; 181-182():70-79. PubMed ID: 31604121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymer models are a versatile tool to study chromatin 3D organization.
    Esposito A; Bianco S; Fiorillo L; Conte M; Abraham A; Musella F; Nicodemi M; Prisco A; Chiariello AM
    Biochem Soc Trans; 2021 Aug; 49(4):1675-1684. PubMed ID: 34282837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Models of polymer physics for the architecture of the cell nucleus.
    Esposito A; Annunziatella C; Bianco S; Chiariello AM; Fiorillo L; Nicodemi M
    Wiley Interdiscip Rev Syst Biol Med; 2019 Jul; 11(4):e1444. PubMed ID: 30566285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A polymer model explains the complexity of large-scale chromatin folding.
    Barbieri M; Fraser J; Lavitas LM; Chotalia M; Dostie J; Pombo A; Nicodemi M
    Nucleus; 2013; 4(4):267-73. PubMed ID: 23823730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational approaches from polymer physics to investigate chromatin folding.
    Bianco S; Chiariello AM; Conte M; Esposito A; Fiorillo L; Musella F; Nicodemi M
    Curr Opin Cell Biol; 2020 Jun; 64():10-17. PubMed ID: 32045823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymer physics of chromosome large-scale 3D organisation.
    Chiariello AM; Annunziatella C; Bianco S; Esposito A; Nicodemi M
    Sci Rep; 2016 Jul; 6():29775. PubMed ID: 27405443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Models of chromosome structure.
    Nicodemi M; Pombo A
    Curr Opin Cell Biol; 2014 Jun; 28():90-5. PubMed ID: 24804566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting chromatin architecture from models of polymer physics.
    Bianco S; Chiariello AM; Annunziatella C; Esposito A; Nicodemi M
    Chromosome Res; 2017 Mar; 25(1):25-34. PubMed ID: 28070687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin folding--from biology to polymer models and back.
    Tark-Dame M; van Driel R; Heermann DW
    J Cell Sci; 2011 Mar; 124(Pt 6):839-45. PubMed ID: 21378305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer models of the hierarchical folding of the Hox-B chromosomal locus.
    Annunziatella C; Chiariello AM; Bianco S; Nicodemi M
    Phys Rev E; 2016 Oct; 94(4-1):042402. PubMed ID: 27841585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How the Genome Folds: The Biophysics of Four-Dimensional Chromatin Organization.
    Parmar JJ; Woringer M; Zimmer C
    Annu Rev Biophys; 2019 May; 48():231-253. PubMed ID: 30835504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Higher-order Chromosome Structures Investigated by Polymer Physics in Cellular Morphogenesis and Differentiation.
    Esposito A; Chiariello AM; Conte M; Fiorillo L; Musella F; Sciarretta R; Bianco S
    J Mol Biol; 2020 Feb; 432(3):701-711. PubMed ID: 31863751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complexity of chromatin folding is captured by the strings and binders switch model.
    Barbieri M; Chotalia M; Fraser J; Lavitas LM; Dostie J; Pombo A; Nicodemi M
    Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16173-8. PubMed ID: 22988072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SOX9 chromatin folding domains correlate with its real and putative distant cis-regulatory elements.
    Smyk M; Akdemir KC; Stankiewicz P
    Nucleus; 2017 Mar; 8(2):182-187. PubMed ID: 28085555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Higher-order chromatin structure: bridging physics and biology.
    Fudenberg G; Mirny LA
    Curr Opin Genet Dev; 2012 Apr; 22(2):115-24. PubMed ID: 22360992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical mechanisms of chromatin spatial organization.
    Chiariello AM; Bianco S; Esposito A; Fiorillo L; Conte M; Irani E; Musella F; Abraham A; Prisco A; Nicodemi M
    FEBS J; 2022 Mar; 289(5):1180-1190. PubMed ID: 33583147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Scalable Computational Approach for Simulating Complexes of Multiple Chromosomes.
    Oliveira Junior AB; Contessoto VG; Mello MF; Onuchic JN
    J Mol Biol; 2021 Mar; 433(6):166700. PubMed ID: 33160979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer Physics of the Large-Scale Structure of Chromatin.
    Bianco S; Chiariello AM; Annunziatella C; Esposito A; Nicodemi M
    Methods Mol Biol; 2016; 1480():201-6. PubMed ID: 27659986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physics-Based Polymer Models to Probe Chromosome Structure in Single Molecules.
    Conte M; Chiariello AM; Bianco S; Esposito A; Abraham A; Nicodemi M
    Methods Mol Biol; 2023; 2655():57-66. PubMed ID: 37212988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.