These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 29522860)

  • 1. Multi-function microfluidic platform for sensor integration.
    Fernandes AC; Semenova D; Panjan P; Sesay AM; Gernaey KV; Krühne U
    N Biotechnol; 2018 Dec; 47():8-17. PubMed ID: 29522860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Caught in-between: System for in-flow inactivation of enzymes as an intermediary step in "plug-and-play" microfluidic platforms.
    Fernandes AC; Petersen B; Møller L; Gernaey KV; Krühne U
    N Biotechnol; 2018 Dec; 47():39-49. PubMed ID: 29684658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems.
    Noeth N; Keller SS; Boisen A
    Sensors (Basel); 2013 Dec; 14(1):229-44. PubMed ID: 24366179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of reconfigurable potentiometric electrochemical sensors into a digital microfluidic platform.
    Farzbod A; Moon H
    Biosens Bioelectron; 2018 May; 106():37-42. PubMed ID: 29414086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Connecting worlds - a view on microfluidics for a wider application".
    Fernandes AC; Gernaey KV; Krühne U
    Biotechnol Adv; 2018; 36(4):1341-1366. PubMed ID: 29733891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chip-based amperometric enzyme sensor system for monitoring of bioprocesses by flow-injection analysis.
    Bäcker M; Rakowski D; Poghossian A; Biselli M; Wagner P; Schöning MJ
    J Biotechnol; 2013 Feb; 163(4):371-6. PubMed ID: 22465601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical glucose sensor for microfluidic cell culture systems.
    Fuchs S; Rieger V; Tjell AØ; Spitz S; Brandauer K; Schaller-Ammann R; Feiel J; Ertl P; Klimant I; Mayr T
    Biosens Bioelectron; 2023 Oct; 237():115491. PubMed ID: 37413826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon photonic sensors incorporated in a digital microfluidic system.
    Lerma Arce C; Witters D; Puers R; Lammertyn J; Bienstman P
    Anal Bioanal Chem; 2012 Dec; 404(10):2887-94. PubMed ID: 22926129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A siphonage flow and thread-based low-cost platform enables quantitative and sensitive assays.
    Lu F; Mao Q; Wu R; Zhang S; Du J; Lv J
    Lab Chip; 2015 Jan; 15(2):495-503. PubMed ID: 25406338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic microwave biosensor based on biomimetic materials for the quantitative detection of glucose.
    Zhang M; Yang X; Ren M; Mao S; Dhakal R; Kim NY; Li Y; Yao Z
    Sci Rep; 2022 Sep; 12(1):15961. PubMed ID: 36153402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microprocessor-based integration of microfluidic control for the implementation of automated sensor monitoring and multithreaded optimization algorithms.
    Ezra E; Maor I; Bavli D; Shalom I; Levy G; Prill S; Jaeger MS; Nahmias Y
    Biomed Microdevices; 2015 Aug; 17(4):82. PubMed ID: 26227212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Stretchable and Transparent Microfluidic Strain Sensors for Monitoring Human Body Motions.
    Yoon SG; Koo HJ; Chang ST
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27562-70. PubMed ID: 26588166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dry Film Photoresist-based Electrochemical Microfluidic Biosensor Platform: Device Fabrication, On-chip Assay Preparation, and System Operation.
    Bruch R; Kling A; Urban GA; Dincer C
    J Vis Exp; 2017 Sep; (127):. PubMed ID: 28994807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly-integrated lab-on-chip system for point-of-care multiparameter analysis.
    Schumacher S; Nestler J; Otto T; Wegener M; Ehrentreich-Förster E; Michel D; Wunderlich K; Palzer S; Sohn K; Weber A; Burgard M; Grzesiak A; Teichert A; Brandenburg A; Koger B; Albers J; Nebling E; Bier FF
    Lab Chip; 2012 Feb; 12(3):464-73. PubMed ID: 22038328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection methods for centrifugal microfluidic platforms.
    Burger R; Amato L; Boisen A
    Biosens Bioelectron; 2016 Feb; 76():54-67. PubMed ID: 26166363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards lab-on-a-chip approaches in real analytical domains based on microfluidic chips/electrochemical multi-walled carbon nanotube platforms.
    Crevillén AG; Pumera M; González MC; Escarpa A
    Lab Chip; 2009 Jan; 9(2):346-53. PubMed ID: 19107295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration and application of optical chemical sensors in microbioreactors.
    Gruber P; Marques MPC; Szita N; Mayr T
    Lab Chip; 2017 Aug; 17(16):2693-2712. PubMed ID: 28725897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A paper-based calorimetric microfluidics platform for bio-chemical sensing.
    Davaji B; Lee CH
    Biosens Bioelectron; 2014 Sep; 59():120-6. PubMed ID: 24713542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic solutions enabling continuous processing and monitoring of biological samples: A review.
    Karle M; Vashist SK; Zengerle R; von Stetten F
    Anal Chim Acta; 2016 Jul; 929():1-22. PubMed ID: 27251944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Droplet Microfluidic-Based Sensor for Simultaneous in Situ Monitoring of Nitrate and Nitrite in Natural Waters.
    Nightingale AM; Hassan SU; Warren BM; Makris K; Evans GWH; Papadopoulou E; Coleman S; Niu X
    Environ Sci Technol; 2019 Aug; 53(16):9677-9685. PubMed ID: 31352782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.