These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 29523085)

  • 1. Comparative assessment of strategies to identify similar ligand-binding pockets in proteins.
    Govindaraj RG; Brylinski M
    BMC Bioinformatics; 2018 Mar; 19(1):91. PubMed ID: 29523085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. eMatchSite: sequence order-independent structure alignments of ligand binding pockets in protein models.
    Brylinski M
    PLoS Comput Biol; 2014 Sep; 10(9):e1003829. PubMed ID: 25232727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. APoc: large-scale identification of similar protein pockets.
    Gao M; Skolnick J
    Bioinformatics; 2013 Mar; 29(5):597-604. PubMed ID: 23335017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: application to ligand prediction.
    Hoffmann B; Zaslavskiy M; Vert JP; Stoven V
    BMC Bioinformatics; 2010 Feb; 11():99. PubMed ID: 20175916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PoLi: A Virtual Screening Pipeline Based on Template Pocket and Ligand Similarity.
    Roy A; Srinivasan B; Skolnick J
    J Chem Inf Model; 2015 Aug; 55(8):1757-70. PubMed ID: 26225536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implications of the small number of distinct ligand binding pockets in proteins for drug discovery, evolution and biochemical function.
    Skolnick J; Gao M; Roy A; Srinivasan B; Zhou H
    Bioorg Med Chem Lett; 2015 Mar; 25(6):1163-70. PubMed ID: 25690787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding site matching in rational drug design: algorithms and applications.
    Naderi M; Lemoine JM; Govindaraj RG; Kana OZ; Feinstein WP; Brylinski M
    Brief Bioinform; 2019 Nov; 20(6):2167-2184. PubMed ID: 30169563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Docking and scoring with ICM: the benchmarking results and strategies for improvement.
    Neves MA; Totrov M; Abagyan R
    J Comput Aided Mol Des; 2012 Jun; 26(6):675-86. PubMed ID: 22569591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational approaches to identifying and characterizing protein binding sites for ligand design.
    Henrich S; Salo-Ahen OM; Huang B; Rippmann FF; Cruciani G; Wade RC
    J Mol Recognit; 2010; 23(2):209-19. PubMed ID: 19746440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets.
    Feinstein WP; Brylinski M
    J Cheminform; 2015; 7():18. PubMed ID: 26082804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time ligand binding pocket database search using local surface descriptors.
    Chikhi R; Sael L; Kihara D
    Proteins; 2010 Jul; 78(9):2007-28. PubMed ID: 20455259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. G-LoSA: An efficient computational tool for local structure-centric biological studies and drug design.
    Lee HS; Im W
    Protein Sci; 2016 Apr; 25(4):865-76. PubMed ID: 26813336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Protein-Ligand Interaction Based on the Positional Similarity Scores Derived from Amino Acid Sequences.
    Karasev D; Sobolev B; Lagunin A; Filimonov D; Poroikov V
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31861473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FINDSITE(comb): a threading/structure-based, proteomic-scale virtual ligand screening approach.
    Zhou H; Skolnick J
    J Chem Inf Model; 2013 Jan; 53(1):230-40. PubMed ID: 23240691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What Makes GPCRs from Different Families Bind to the Same Ligand?
    Dankwah KO; Mohl JE; Begum K; Leung MY
    Biomolecules; 2022 Jun; 12(7):. PubMed ID: 35883418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power.
    Wang Z; Sun H; Yao X; Li D; Xu L; Li Y; Tian S; Hou T
    Phys Chem Chem Phys; 2016 May; 18(18):12964-75. PubMed ID: 27108770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Assessment of Pose Prediction Accuracy in RNA-Ligand Docking.
    Agarwal R; T RR; Smith JC
    J Chem Inf Model; 2023 Dec; 63(23):7444-7452. PubMed ID: 37972310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. mRAISE: an alternative algorithmic approach to ligand-based virtual screening.
    von Behren MM; Bietz S; Nittinger E; Rarey M
    J Comput Aided Mol Des; 2016 Aug; 30(8):583-94. PubMed ID: 27565795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive survey of small-molecule binding pockets in proteins.
    Gao M; Skolnick J
    PLoS Comput Biol; 2013 Oct; 9(10):e1003302. PubMed ID: 24204237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepDrug3D: Classification of ligand-binding pockets in proteins with a convolutional neural network.
    Pu L; Govindaraj RG; Lemoine JM; Wu HC; Brylinski M
    PLoS Comput Biol; 2019 Feb; 15(2):e1006718. PubMed ID: 30716081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.