These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
408 related articles for article (PubMed ID: 29523149)
1. Metabolic engineering of the 2-ketobutyrate biosynthetic pathway for 1-propanol production in Saccharomyces cerevisiae. Nishimura Y; Matsui T; Ishii J; Kondo A Microb Cell Fact; 2018 Mar; 17(1):38. PubMed ID: 29523149 [TBL] [Abstract][Full Text] [Related]
2. Identification of Core Regulatory Genes and Metabolic Pathways for the Wang YP; Sun ZG; Wei XQ; Guo XW; Xiao DG J Agric Food Chem; 2021 Feb; 69(5):1637-1646. PubMed ID: 33502852 [TBL] [Abstract][Full Text] [Related]
3. Genetic engineering to alter carbon flux for various higher alcohol productions by Saccharomyces cerevisiae for Chinese Baijiu fermentation. Li W; Chen SJ; Wang JH; Zhang CY; Shi Y; Guo XW; Chen YF; Xiao DG Appl Microbiol Biotechnol; 2018 Feb; 102(4):1783-1795. PubMed ID: 29305698 [TBL] [Abstract][Full Text] [Related]
4. Overexpressing enzymes of the Ehrlich pathway and deleting genes of the competing pathway in Saccharomyces cerevisiae for increasing 2-phenylethanol production from glucose. Shen L; Nishimura Y; Matsuda F; Ishii J; Kondo A J Biosci Bioeng; 2016 Jul; 122(1):34-9. PubMed ID: 26975754 [TBL] [Abstract][Full Text] [Related]
5. Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Atsumi S; Liao JC Appl Environ Microbiol; 2008 Dec; 74(24):7802-8. PubMed ID: 18952866 [TBL] [Abstract][Full Text] [Related]
6. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background. Novy V; Brunner B; Müller G; Nidetzky B Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989 [TBL] [Abstract][Full Text] [Related]
7. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. Kondo T; Tezuka H; Ishii J; Matsuda F; Ogino C; Kondo A J Biotechnol; 2012 May; 159(1-2):32-7. PubMed ID: 22342368 [TBL] [Abstract][Full Text] [Related]
8. Synergy as design principle for metabolic engineering of 1-propanol production in Escherichia coli. Shen CR; Liao JC Metab Eng; 2013 May; 17():12-22. PubMed ID: 23376654 [TBL] [Abstract][Full Text] [Related]
9. Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae. Yu KO; Jung J; Ramzi AB; Kim SW; Park C; Han SO Appl Biochem Biotechnol; 2012 Feb; 166(4):856-65. PubMed ID: 22161213 [TBL] [Abstract][Full Text] [Related]
10. Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae. Shi S; Si T; Liu Z; Zhang H; Ang EL; Zhao H Sci Rep; 2016 May; 6():25675. PubMed ID: 27161023 [TBL] [Abstract][Full Text] [Related]
11. Metabolic engineering of threonine catabolism enables Saccharomyces cerevisiae to produce propionate under aerobic conditions. Ding W; Meng Q; Dong G; Qi N; Zhao H; Shi S Biotechnol J; 2022 Mar; 17(3):e2100579. PubMed ID: 35086163 [TBL] [Abstract][Full Text] [Related]
12. Repression of mitochondrial metabolism for cytosolic pyruvate-derived chemical production in Saccharomyces cerevisiae. Morita K; Matsuda F; Okamoto K; Ishii J; Kondo A; Shimizu H Microb Cell Fact; 2019 Oct; 18(1):177. PubMed ID: 31615527 [TBL] [Abstract][Full Text] [Related]
13. Metabolic engineering of Escherichia coli for the production of 1-propanol. Choi YJ; Park JH; Kim TY; Lee SY Metab Eng; 2012 Sep; 14(5):477-86. PubMed ID: 22871504 [TBL] [Abstract][Full Text] [Related]
14. Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ Chen Y; Wang Y; Liu M; Qu J; Yao M; Li B; Ding M; Liu H; Xiao W; Yuan Y Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683746 [No Abstract] [Full Text] [Related]
15. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Lian J; Chao R; Zhao H Metab Eng; 2014 May; 23():92-9. PubMed ID: 24525332 [TBL] [Abstract][Full Text] [Related]
16. Dehydratase mediated 1-propanol production in metabolically engineered Escherichia coli. Jain R; Yan Y Microb Cell Fact; 2011 Nov; 10():97. PubMed ID: 22074179 [TBL] [Abstract][Full Text] [Related]
17. Regulation of thiamine synthesis in Saccharomyces cerevisiae for improved pyruvate production. Xu G; Hua Q; Duan N; Liu L; Chen J Yeast; 2012 Jun; 29(6):209-17. PubMed ID: 22674684 [TBL] [Abstract][Full Text] [Related]
18. Saccharomyces cerevisiae, key role of MIG1 gene in metabolic switching: putative fermentation/oxidation. Alipourfard I; Bakhtiyari S; Datukishvili N; Haghani K; Di Renzo L; De Miranda RC; Cioccoloni G; Basiratyan Yazdi P; Mikeladze D J Biol Regul Homeost Agents; 2018; 32(3):649-654. PubMed ID: 29921394 [TBL] [Abstract][Full Text] [Related]
19. L-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: aeration and carbon source influence yields and productivities. Novy V; Brunner B; Nidetzky B Microb Cell Fact; 2018 Apr; 17(1):59. PubMed ID: 29642896 [TBL] [Abstract][Full Text] [Related]
20. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. Zhang GC; Turner TL; Jin YS J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]