These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
408 related articles for article (PubMed ID: 29523149)
21. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae. Yoshida S; Tanaka H; Hirayama M; Murata K; Kawai S Bioengineered; 2015; 6(6):347-50. PubMed ID: 26588105 [TBL] [Abstract][Full Text] [Related]
22. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Wisselink HW; Toirkens MJ; del Rosario Franco Berriel M; Winkler AA; van Dijken JP; Pronk JT; van Maris AJ Appl Environ Microbiol; 2007 Aug; 73(15):4881-91. PubMed ID: 17545317 [TBL] [Abstract][Full Text] [Related]
23. Production of (S)-2-aminobutyric acid and (S)-2-aminobutanol in Saccharomyces cerevisiae. Weber N; Hatsch A; Labagnere L; Heider H Microb Cell Fact; 2017 Mar; 16(1):51. PubMed ID: 28335772 [TBL] [Abstract][Full Text] [Related]
24. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae. Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556 [TBL] [Abstract][Full Text] [Related]
25. Improved 2,3-Butanediol Production Rate of Metabolically Engineered Sugimura M; Seike T; Okahashi N; Izumi Y; Bamba T; Ishii J; Matsuda F Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003568 [No Abstract] [Full Text] [Related]
26. Enhanced ethanol fermentation by engineered Saccharomyces cerevisiae strains with high spermidine contents. Kim SK; Jo JH; Jin YS; Seo JH Bioprocess Biosyst Eng; 2017 May; 40(5):683-691. PubMed ID: 28120125 [TBL] [Abstract][Full Text] [Related]
27. [Metabolic engineering strategies for carboxylic acids production by Saccharomyces cerevisiae---a review]. Xu G; Liu L; Chen J Wei Sheng Wu Xue Bao; 2011 Dec; 51(12):1571-7. PubMed ID: 22379797 [TBL] [Abstract][Full Text] [Related]
28. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering. Chen Y; Stabryla L; Wei N Appl Environ Microbiol; 2016 Jan; 82(7):2156-2166. PubMed ID: 26826231 [TBL] [Abstract][Full Text] [Related]
29. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Kwak S; Jin YS Microb Cell Fact; 2017 May; 16(1):82. PubMed ID: 28494761 [TBL] [Abstract][Full Text] [Related]
30. A modified Cre-lox genetic switch to dynamically control metabolic flow in Saccharomyces cerevisiae. Yamanishi M; Matsuyama T ACS Synth Biol; 2012 May; 1(5):172-80. PubMed ID: 23651155 [TBL] [Abstract][Full Text] [Related]
31. Production of (S)-3-hydroxybutyrate by metabolically engineered Saccharomyces cerevisiae. Yun EJ; Kwak S; Kim SR; Park YC; Jin YS; Kim KH J Biotechnol; 2015 Sep; 209():23-30. PubMed ID: 26026703 [TBL] [Abstract][Full Text] [Related]
32. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206 [TBL] [Abstract][Full Text] [Related]
33. Metabolic engineering for high glycerol production by the anaerobic cultures of Saccharomyces cerevisiae. Semkiv MV; Dmytruk KV; Abbas CA; Sibirny AA Appl Microbiol Biotechnol; 2017 Jun; 101(11):4403-4416. PubMed ID: 28280870 [TBL] [Abstract][Full Text] [Related]
34. Systematic Metabolic Engineering of Shi B; Ma T; Ye Z; Li X; Huang Y; Zhou Z; Ding Y; Deng Z; Liu T J Agric Food Chem; 2019 Oct; 67(40):11148-11157. PubMed ID: 31532654 [TBL] [Abstract][Full Text] [Related]
35. Enhanced production of 2,3-butanediol in pyruvate decarboxylase-deficient Saccharomyces cerevisiae through optimizing ratio of glucose/galactose. Choi EJ; Kim JW; Kim SJ; Seo SO; Lane S; Park YC; Jin YS; Seo JH Biotechnol J; 2016 Nov; 11(11):1424-1432. PubMed ID: 27528190 [TBL] [Abstract][Full Text] [Related]
36. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway. Ishii J; Yoshimura K; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007 [TBL] [Abstract][Full Text] [Related]
37. Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae. Si T; Luo Y; Xiao H; Zhao H Metab Eng; 2014 Mar; 22():60-8. PubMed ID: 24412568 [TBL] [Abstract][Full Text] [Related]
38. Global Metabolic Engineering of Glycolytic Pathway via Multicopy Integration in Saccharomyces cerevisiae. Yamada R; Wakita K; Ogino H ACS Synth Biol; 2017 Apr; 6(4):659-666. PubMed ID: 28080037 [TBL] [Abstract][Full Text] [Related]
39. Expression of Saccharomyces cerevisiae cDNAs to enhance the growth of non-ethanol-producing S. cerevisiae strains lacking pyruvate decarboxylases. Narazaki Y; Nomura Y; Morita K; Shimizu H; Matsuda F J Biosci Bioeng; 2018 Sep; 126(3):317-321. PubMed ID: 29636254 [TBL] [Abstract][Full Text] [Related]
40. Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae. Kim SJ; Seo SO; Park YC; Jin YS; Seo JH J Biotechnol; 2014 Dec; 192 Pt B():376-82. PubMed ID: 24480571 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]