These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
408 related articles for article (PubMed ID: 29523149)
41. Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae. Quarterman J; Skerker JM; Feng X; Liu IY; Zhao H; Arkin AP; Jin YS J Biotechnol; 2016 Jul; 229():13-21. PubMed ID: 27140870 [TBL] [Abstract][Full Text] [Related]
42. Engineering Saccharomyces cerevisiae for Enhanced Production of Protopanaxadiol with Cofermentation of Glucose and Xylose. Gao X; Caiyin Q; Zhao F; Wu Y; Lu W J Agric Food Chem; 2018 Nov; 66(45):12009-12016. PubMed ID: 30350965 [TBL] [Abstract][Full Text] [Related]
43. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering. Chen Y; Xiao W; Wang Y; Liu H; Li X; Yuan Y Microb Cell Fact; 2016 Jun; 15(1):113. PubMed ID: 27329233 [TBL] [Abstract][Full Text] [Related]
44. Efficient production of glycyrrhetinic acid in metabolically engineered Saccharomyces cerevisiae via an integrated strategy. Wang C; Su X; Sun M; Zhang M; Wu J; Xing J; Wang Y; Xue J; Liu X; Sun W; Chen S Microb Cell Fact; 2019 May; 18(1):95. PubMed ID: 31138208 [TBL] [Abstract][Full Text] [Related]
45. Production of α-ketobutyrate using engineered Escherichia coli via temperature shift. Zhang C; Qi J; Li Y; Fan X; Xu Q; Chen N; Xie X Biotechnol Bioeng; 2016 Sep; 113(9):2054-9. PubMed ID: 26917255 [TBL] [Abstract][Full Text] [Related]
46. Xylose fermentation by Saccharomyces cerevisiae using endogenous xylose-assimilating genes. Konishi J; Fukuda A; Mutaguchi K; Uemura T Biotechnol Lett; 2015 Aug; 37(8):1623-30. PubMed ID: 25994575 [TBL] [Abstract][Full Text] [Related]
47. Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose. Gottardi M; Reifenrath M; Boles E; Tripp J FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582489 [TBL] [Abstract][Full Text] [Related]
48. Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of Salidroside from Glucose. Jiang J; Yin H; Wang S; Zhuang Y; Liu S; Liu T; Ma Y J Agric Food Chem; 2018 May; 66(17):4431-4438. PubMed ID: 29671328 [TBL] [Abstract][Full Text] [Related]
49. 2,3-butanediol production from cellobiose by engineered Saccharomyces cerevisiae. Nan H; Seo SO; Oh EJ; Seo JH; Cate JH; Jin YS Appl Microbiol Biotechnol; 2014 Jun; 98(12):5757-64. PubMed ID: 24743979 [TBL] [Abstract][Full Text] [Related]
50. Fermentative production of 1-propanol from d-glucose, l-rhamnose and glycerol using recombinant Escherichia coli. Matsubara M; Urano N; Yamada S; Narutaki A; Fujii M; Kataoka M J Biosci Bioeng; 2016 Oct; 122(4):421-6. PubMed ID: 27072298 [TBL] [Abstract][Full Text] [Related]
51. Heterologous expression of bacterial phosphoenol pyruvate carboxylase and Entner-Doudoroff pathway in Saccharomyces cerevisiae for improvement of isobutanol production. Morita K; Nomura Y; Ishii J; Matsuda F; Kondo A; Shimizu H J Biosci Bioeng; 2017 Sep; 124(3):263-270. PubMed ID: 28539187 [TBL] [Abstract][Full Text] [Related]
52. Overexpression of the truncated version of ILV2 enhances glycerol production in Saccharomyces cerevisiae. Murashchenko L; Abbas C; Dmytruk K; Sibirny A Yeast; 2016 Aug; 33(8):463-9. PubMed ID: 26990811 [TBL] [Abstract][Full Text] [Related]
53. Glucose assimilation rate determines the partition of flux at pyruvate between lactic acid and ethanol in Saccharomyces cerevisiae. Lane S; Turner TL; Jin YS Biotechnol J; 2023 Apr; 18(4):e2200535. PubMed ID: 36723451 [TBL] [Abstract][Full Text] [Related]
54. Metabolic engineering of the L-serine biosynthetic pathway improves glutathione production in Saccharomyces cerevisiae. Kobayashi J; Sasaki D; Hara KY; Hasunuma T; Kondo A Microb Cell Fact; 2022 Aug; 21(1):153. PubMed ID: 35933377 [TBL] [Abstract][Full Text] [Related]
55. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Kim SR; Park YC; Jin YS; Seo JH Biotechnol Adv; 2013 Nov; 31(6):851-61. PubMed ID: 23524005 [TBL] [Abstract][Full Text] [Related]
56. Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose. Lee WH; Jin YS J Microbiol Biotechnol; 2017 Sep; 27(9):1649-1656. PubMed ID: 28683531 [TBL] [Abstract][Full Text] [Related]
57. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. van Maris AJ; Geertman JM; Vermeulen A; Groothuizen MK; Winkler AA; Piper MD; van Dijken JP; Pronk JT Appl Environ Microbiol; 2004 Jan; 70(1):159-66. PubMed ID: 14711638 [TBL] [Abstract][Full Text] [Related]
58. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae. Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006 [TBL] [Abstract][Full Text] [Related]
59. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering. Baek SH; Kwon EY; Bae SJ; Cho BR; Kim SY; Hahn JS Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731533 [TBL] [Abstract][Full Text] [Related]
60. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae. Feng Q; Liu ZL; Weber SA; Li S PLoS One; 2018; 13(4):e0195633. PubMed ID: 29621349 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]