BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 29523235)

  • 1. A Proximity Ligation-Based Method for Quantitative Measurement of D-Loop Extension in S. cerevisiae.
    Piazza A; Koszul R; Heyer WD
    Methods Enzymol; 2018; 601():27-44. PubMed ID: 29523235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical Analysis of D-Loop Extension and DNA Strand Displacement Synthesis.
    Kwon Y; Sung P
    Methods Mol Biol; 2021; 2153():87-99. PubMed ID: 32840774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Approach to Detect and Study DNA Double-Strand Break Repair by Transcript RNA Using a Spliced-Antisense RNA Template.
    Keskin H; Storici F
    Methods Enzymol; 2018; 601():59-70. PubMed ID: 29523242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathways and assays for DNA double-strand break repair by homologous recombination.
    Li J; Sun H; Huang Y; Wang Y; Liu Y; Chen X
    Acta Biochim Biophys Sin (Shanghai); 2019 Sep; 51(9):879-889. PubMed ID: 31294447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rad51-mediated double-strand break repair and mismatch correction of divergent substrates.
    Anand R; Beach A; Li K; Haber J
    Nature; 2017 Apr; 544(7650):377-380. PubMed ID: 28405019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double-strand break repair.
    Teo SH; Jackson SP
    EMBO J; 1997 Aug; 16(15):4788-95. PubMed ID: 9303323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S1-seq Assay for Mapping Processed DNA Ends.
    Mimitou EP; Keeney S
    Methods Enzymol; 2018; 601():309-330. PubMed ID: 29523237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of Homologous Recombination Intermediates via Proximity Ligation and Quantitative PCR in Saccharomyces cerevisiae.
    Reitz D; Savocco J; Piazza A; Heyer WD
    J Vis Exp; 2022 Sep; (187):. PubMed ID: 36155960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The SWI/SNF ATP-dependent nucleosome remodeler promotes resection initiation at a DNA double-strand break in yeast.
    Wiest NE; Houghtaling S; Sanchez JC; Tomkinson AE; Osley MA
    Nucleic Acids Res; 2017 Jun; 45(10):5887-5900. PubMed ID: 28398510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of Break-Induced Replication in Yeast.
    Elango R; Kockler Z; Liu L; Malkova A
    Methods Enzymol; 2018; 601():161-203. PubMed ID: 29523232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of hetDNA Length during Mitotic Double-Strand Break Repair in Yeast.
    Guo X; Hum YF; Lehner K; Jinks-Robertson S
    Mol Cell; 2017 Aug; 67(4):539-549.e4. PubMed ID: 28781235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cdk1 targets Srs2 to complete synthesis-dependent strand annealing and to promote recombinational repair.
    Saponaro M; Callahan D; Zheng X; Krejci L; Haber JE; Klein HL; Liberi G
    PLoS Genet; 2010 Feb; 6(2):e1000858. PubMed ID: 20195513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Double-Strand Break End-Tethering during Gene Conversion in Saccharomyces cerevisiae.
    Jain S; Sugawara N; Haber JE
    PLoS Genet; 2016 Apr; 12(4):e1005976. PubMed ID: 27074148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast DNA ligase IV mediates non-homologous DNA end joining.
    Wilson TE; Grawunder U; Lieber MR
    Nature; 1997 Jul; 388(6641):495-8. PubMed ID: 9242411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical and Genetic Assays for the Study of DNA Joint Molecules Metabolism and Multi-invasion-Induced Rearrangements in S. cerevisiae.
    Piazza A; Rajput P; Heyer WD
    Methods Mol Biol; 2021; 2153():535-554. PubMed ID: 32840803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rad52 Inverse Strand Exchange Drives RNA-Templated DNA Double-Strand Break Repair.
    Mazina OM; Keskin H; Hanamshet K; Storici F; Mazin AV
    Mol Cell; 2017 Jul; 67(1):19-29.e3. PubMed ID: 28602639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moving forward one step back at a time: reversibility during homologous recombination.
    Piazza A; Heyer WD
    Curr Genet; 2019 Dec; 65(6):1333-1340. PubMed ID: 31123771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring Double-Strand Break Repair of Trinucleotide Repeats Using a Yeast Fluorescent Reporter Assay.
    Poggi L; Dumas B; Richard GF
    Methods Mol Biol; 2020; 2056():113-120. PubMed ID: 31586344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of rDNA stability by sumoylation.
    Eckert-Boulet N; Lisby M
    DNA Repair (Amst); 2009 Apr; 8(4):507-16. PubMed ID: 19261548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring homology search during DNA double-strand break repair in vivo.
    Renkawitz J; Lademann CA; Kalocsay M; Jentsch S
    Mol Cell; 2013 Apr; 50(2):261-72. PubMed ID: 23523370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.