BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 29523294)

  • 1. Plasma creatine as a marker of mitochondrial dysfunction.
    Ostojic SM
    Med Hypotheses; 2018 Apr; 113():52-53. PubMed ID: 29523294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diaphragm and cardiac mitochondrial creatine kinases are impaired in sepsis.
    Callahan LA; Supinski GS
    J Appl Physiol (1985); 2007 Jan; 102(1):44-53. PubMed ID: 16916915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Dependence between mitochondrial creatine kinase activity and ATP level in the brain ischemia].
    Moshkova AN; Erlykina EI; Khvatova EM
    Biomed Khim; 2009; 55(6):759-65. PubMed ID: 20469724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aeromonas caviae alters the cytosolic and mitochondrial creatine kinase activities in experimentally infected silver catfish: Impairment on renal bioenergetics.
    Baldissera MD; Souza CF; Júnior GB; Verdi CM; Moreira KLS; da Rocha MIUM; da Veiga ML; Santos RCV; Vizzotto BS; Baldisserotto B
    Microb Pathog; 2017 Sep; 110():439-443. PubMed ID: 28735082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Streptococcus agalactiae impairs cerebral bioenergetics in experimentally infected silver catfish.
    Baldissera MD; Souza CF; Parmeggiani BS; Santos RCV; Leipnitz G; Moreira KLS; da Rocha MIUM; da Veiga ML; Baldisserotto B
    Microb Pathog; 2017 Oct; 111():28-32. PubMed ID: 28807772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of creatine as biomarker of mitochondrial diseases.
    Pajares S; Arias A; García-Villoria J; Briones P; Ribes A
    Mol Genet Metab; 2013 Feb; 108(2):119-24. PubMed ID: 23313063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomarkers for mitochondrial energy metabolism diseases.
    Boenzi S; Diodato D
    Essays Biochem; 2018 Jul; 62(3):443-454. PubMed ID: 29980631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis.
    Rossignol DA; Frye RE
    Mol Psychiatry; 2012 Mar; 17(3):290-314. PubMed ID: 21263444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA
    Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-linked creatine transporter deficiency presenting as a mitochondrial disorder.
    Hathaway SC; Friez M; Limbo K; Parker C; Salomons GS; Vockley J; Wood T; Abdul-Rahman OA
    J Child Neurol; 2010 Aug; 25(8):1009-12. PubMed ID: 20501887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A plasma signature of human mitochondrial disease revealed through metabolic profiling of spent media from cultured muscle cells.
    Shaham O; Slate NG; Goldberger O; Xu Q; Ramanathan A; Souza AL; Clish CB; Sims KB; Mootha VK
    Proc Natl Acad Sci U S A; 2010 Jan; 107(4):1571-5. PubMed ID: 20080599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the Phosphoryl Transfer Mechanism of Human Ubiquitous Mitochondrial Creatine Kinase.
    Li Q; Fan S; Li X; Jin Y; He W; Zhou J; Cen S; Yang Z
    Sci Rep; 2016 Dec; 6():38088. PubMed ID: 27909311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monocarboxylate transporters and mitochondrial creatine kinase protein content in McArdle disease.
    Kitaoka Y; Ogborn DI; Mocellin NJ; Schlattner U; Tarnopolsky MA
    Mol Genet Metab; 2013 Apr; 108(4):259-62. PubMed ID: 23434346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling in vivo creatine/phosphocreatine in vitro reveals divergent adaptations in human muscle mitochondrial respiratory control by ADP after acute and chronic exercise.
    Ydfors M; Hughes MC; Laham R; Schlattner U; Norrbom J; Perry CG
    J Physiol; 2016 Jun; 594(11):3127-40. PubMed ID: 26631938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-function relationships in feedback regulation of energy fluxes in vivo in health and disease: mitochondrial interactosome.
    Saks V; Guzun R; Timohhina N; Tepp K; Varikmaa M; Monge C; Beraud N; Kaambre T; Kuznetsov A; Kadaja L; Eimre M; Seppet E
    Biochim Biophys Acta; 2010; 1797(6-7):678-97. PubMed ID: 20096261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase.
    Jacobus WE
    Annu Rev Physiol; 1985; 47():707-25. PubMed ID: 3888084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creatine supplementation normalizes mutagenesis of mitochondrial DNA as well as functional consequences.
    Berneburg M; Gremmel T; Kürten V; Schroeder P; Hertel I; von Mikecz A; Wild S; Chen M; Declercq L; Matsui M; Ruzicka T; Krutmann J
    J Invest Dermatol; 2005 Aug; 125(2):213-20. PubMed ID: 16098029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of respiration controlled by mitochondrial creatine kinase in permeabilized cardiac cells in situ. Importance of system level properties.
    Guzun R; Timohhina N; Tepp K; Monge C; Kaambre T; Sikk P; Kuznetsov AV; Pison C; Saks V
    Biochim Biophys Acta; 2009 Sep; 1787(9):1089-105. PubMed ID: 19362066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creatine kinase and mitochondrial respiration in hearts of trout, cod and freshwater turtle.
    Birkedal R; Gesser H
    J Comp Physiol B; 2003 Aug; 173(6):493-9. PubMed ID: 12856133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel mechanism of regulation of cardiac contractility by mitochondrial functional state.
    Kaasik A; Joubert F; Ventura-Clapier R; Veksler V
    FASEB J; 2004 Aug; 18(11):1219-27. PubMed ID: 15284222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.