These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 29523623)

  • 1. Coordinated Ramping of Dorsal Striatal Pathways preceding Food Approach and Consumption.
    London TD; Licholai JA; Szczot I; Ali MA; LeBlanc KH; Fobbs WC; Kravitz AV
    J Neurosci; 2018 Apr; 38(14):3547-3558. PubMed ID: 29523623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ventrolateral Striatal Medium Spiny Neurons Positively Regulate Food-Incentive, Goal-Directed Behavior Independently of D1 and D2 Selectivity.
    Natsubori A; Tsutsui-Kimura I; Nishida H; Bouchekioua Y; Sekiya H; Uchigashima M; Watanabe M; de Kerchove d'Exaerde A; Mimura M; Takata N; Tanaka KF
    J Neurosci; 2017 Mar; 37(10):2723-2733. PubMed ID: 28167674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous Representations of Speed by Striatal Medium Spiny Neurons.
    Fobbs WC; Bariselli S; Licholai JA; Miyazaki NL; Matikainen-Ankney BA; Creed MC; Kravitz AV
    J Neurosci; 2020 Feb; 40(8):1679-1688. PubMed ID: 31953369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic insights into striatal function and behavior.
    Lenz JD; Lobo MK
    Behav Brain Res; 2013 Oct; 255():44-54. PubMed ID: 23628212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreasing Striatopallidal Pathway Function Enhances Motivation by Energizing the Initiation of Goal-Directed Action.
    Carvalho Poyraz F; Holzner E; Bailey MR; Meszaros J; Kenney L; Kheirbek MA; Balsam PD; Kellendonk C
    J Neurosci; 2016 Jun; 36(22):5988-6001. PubMed ID: 27251620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Striatal firing rate reflects head movement velocity.
    Kim N; Barter JW; Sukharnikova T; Yin HH
    Eur J Neurosci; 2014 Nov; 40(10):3481-90. PubMed ID: 25209171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast-spiking interneurons of the rat ventral striatum: temporal coordination of activity with principal cells and responsiveness to reward.
    Lansink CS; Goltstein PM; Lankelma JV; Pennartz CM
    Eur J Neurosci; 2010 Aug; 32(3):494-508. PubMed ID: 20704595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Striatal Activity and Reward Relativity: Neural Signals Encoding Dynamic Outcome Valuation.
    Webber ES; Mankin DE; Cromwell HC
    eNeuro; 2016; 3(5):. PubMed ID: 27822506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Representation of the body in the lateral striatum of the freely moving rat: Fast Spiking Interneurons respond to stimulation of individual body parts.
    Kulik JM; Pawlak AP; Kalkat M; Coffey KR; West MO
    Brain Res; 2017 Feb; 1657():101-108. PubMed ID: 27914882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dopamine Axons in Dorsal Striatum Encode Contralateral Visual Stimuli and Choices.
    Moss MM; Zatka-Haas P; Harris KD; Carandini M; Lak A
    J Neurosci; 2021 Aug; 41(34):7197-7205. PubMed ID: 34253628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parcellation of the striatal complex into dorsal and ventral districts.
    Chen SY; Lu KM; Ko HA; Huang TH; Hao JH; Yan YT; Chang SL; Evans SM; Liu FC
    Proc Natl Acad Sci U S A; 2020 Mar; 117(13):7418-7429. PubMed ID: 32170006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The acquisition of goal-directed actions generates opposing plasticity in direct and indirect pathways in dorsomedial striatum.
    Shan Q; Ge M; Christie MJ; Balleine BW
    J Neurosci; 2014 Jul; 34(28):9196-201. PubMed ID: 25009253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential coding of reward and movement information in the dorsomedial striatal direct and indirect pathways.
    Shin JH; Kim D; Jung MW
    Nat Commun; 2018 Jan; 9(1):404. PubMed ID: 29374173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. No Discrete Start/Stop Signals in the Dorsal Striatum of Mice Performing a Learned Action.
    Sales-Carbonell C; Taouali W; Khalki L; Pasquet MO; Petit LF; Moreau T; Rueda-Orozco PE; Robbe D
    Curr Biol; 2018 Oct; 28(19):3044-3055.e5. PubMed ID: 30270180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring and Updating of Action Selection for Goal-Directed Behavior through the Striatal Direct and Indirect Pathways.
    Nonomura S; Nishizawa K; Sakai Y; Kawaguchi Y; Kato S; Uchigashima M; Watanabe M; Yamanaka K; Enomoto K; Chiken S; Sano H; Soma S; Yoshida J; Samejima K; Ogawa M; Kobayashi K; Nambu A; Isomura Y; Kimura M
    Neuron; 2018 Sep; 99(6):1302-1314.e5. PubMed ID: 30146299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A competitive model for striatal action selection.
    Bariselli S; Fobbs WC; Creed MC; Kravitz AV
    Brain Res; 2019 Jun; 1713():70-79. PubMed ID: 30300636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kainate Receptors Inhibit Glutamate Release Via Mobilization of Endocannabinoids in Striatal Direct Pathway Spiny Projection Neurons.
    Marshall JJ; Xu J; Contractor A
    J Neurosci; 2018 Apr; 38(16):3901-3910. PubMed ID: 29540547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Nigrostriatal Dopamine Biases Action Selection.
    Howard CD; Li H; Geddes CE; Jin X
    Neuron; 2017 Mar; 93(6):1436-1450.e8. PubMed ID: 28285820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Striatopallidal Neuron NMDA Receptors Control Synaptic Connectivity, Locomotor, and Goal-Directed Behaviors.
    Lambot L; Chaves Rodriguez E; Houtteman D; Li Y; Schiffmann SN; Gall D; de Kerchove d'Exaerde A
    J Neurosci; 2016 May; 36(18):4976-92. PubMed ID: 27147651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-Type-Specific Sensorimotor Processing in Striatal Projection Neurons during Goal-Directed Behavior.
    Sippy T; Lapray D; Crochet S; Petersen CC
    Neuron; 2015 Oct; 88(2):298-305. PubMed ID: 26439527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.