These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Molecular dynamics simulation of a phosphatidylglycerol membrane. Elmore DE FEBS Lett; 2006 Jan; 580(1):144-8. PubMed ID: 16359668 [TBL] [Abstract][Full Text] [Related]
9. Insight into the mechanism of antimicrobial conjugated polyelectrolytes: lipid headgroup charge and membrane fluidity effects. Ding L; Chi EY; Schanze KS; Lopez GP; Whitten DG Langmuir; 2010 Apr; 26(8):5544-50. PubMed ID: 20000327 [TBL] [Abstract][Full Text] [Related]
10. Charge pairing of headgroups in phosphatidylcholine membranes: A molecular dynamics simulation study. Pasenkiewicz-Gierula M; Takaoka Y; Miyagawa H; Kitamura K; Kusumi A Biophys J; 1999 Mar; 76(3):1228-40. PubMed ID: 10049307 [TBL] [Abstract][Full Text] [Related]
11. The importance of membrane defects-lessons from simulations. Bennett WF; Tieleman DP Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900 [TBL] [Abstract][Full Text] [Related]
12. Role of interactions at the lipid-water interface for domain formation. Gawrisch K; Barry JA; Holte LL; Sinnwell T; Bergelson LD; Ferretti JA Mol Membr Biol; 1995; 12(1):83-8. PubMed ID: 7767388 [TBL] [Abstract][Full Text] [Related]
13. Phosphatidylglyerol Lipid Binding at the Active Site of an Intramembrane Protease. Bondar AN J Membr Biol; 2020 Dec; 253(6):563-576. PubMed ID: 33210155 [TBL] [Abstract][Full Text] [Related]
14. Insertion of Dengue E into lipid bilayers studied by neutron reflectivity and molecular dynamics simulations. Vanegas JM; Heinrich F; Rogers DM; Carson BD; La Bauve S; Vernon BC; Akgun B; Satija S; Zheng A; Kielian M; Rempe SB; Kent MS Biochim Biophys Acta Biomembr; 2018 May; 1860(5):1216-1230. PubMed ID: 29447917 [TBL] [Abstract][Full Text] [Related]
15. On the role of anionic lipids in charged protein interactions with membranes. Vorobyov I; Allen TW Biochim Biophys Acta; 2011 Jun; 1808(6):1673-83. PubMed ID: 21073855 [TBL] [Abstract][Full Text] [Related]
16. Ionic Hydrogen Bonds and Lipid Packing Defects Determine the Binding Orientation and Insertion Depth of RecA on Multicomponent Lipid Bilayers. Zhang L; Rajendram M; Weibel DB; Yethiraj A; Cui Q J Phys Chem B; 2016 Aug; 120(33):8424-37. PubMed ID: 27095675 [TBL] [Abstract][Full Text] [Related]
17. Interactions of the fatty acid-binding protein ReP1-NCXSQ with lipid membranes. Influence of the membrane electric field on binding and orientation. Galassi VV; Villarreal MA; Posada V; Montich GG Biochim Biophys Acta; 2014 Mar; 1838(3):910-20. PubMed ID: 24269200 [TBL] [Abstract][Full Text] [Related]
18. Interactions of Polyethylenimines with Zwitterionic and Anionic Lipid Membranes. Kwolek U; Jamróz D; Janiczek M; Nowakowska M; Wydro P; Kepczynski M Langmuir; 2016 May; 32(19):5004-18. PubMed ID: 27115556 [TBL] [Abstract][Full Text] [Related]
19. Unraveling the Origin of the Apparent Charge of Zwitterionic Lipid Layers. Dreier LB; Wolde-Kidan A; Bonthuis DJ; Netz RR; Backus EHG; Bonn M J Phys Chem Lett; 2019 Oct; 10(20):6355-6359. PubMed ID: 31568720 [TBL] [Abstract][Full Text] [Related]
20. Study of curcumin behavior in two different lipid bilayer models of liposomal curcumin using molecular dynamics simulation. Jalili S; Saeedi M J Biomol Struct Dyn; 2016; 34(2):327-40. PubMed ID: 25811078 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]