These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 29524004)
1. Antixenosis and antibiosis response of common bean (Phaseolus vulgaris) to two-spotted spider mite (Tetranychus urticae). Shoorooei M; Hoseinzadeh AH; Maali-Amiri R; Allahyari H; Torkzadeh-Mahani M Exp Appl Acarol; 2018 Apr; 74(4):365-381. PubMed ID: 29524004 [TBL] [Abstract][Full Text] [Related]
2. Performance of Tetranychus urticae (Acari: Tetranychidae) on three hop cultivars (Humulus lupulus). Savi PJ; Gonsaga RF; de Matos STS; Braz LT; de Moraes GJ; de Andrade DJ Exp Appl Acarol; 2021 Aug; 84(4):733-753. PubMed ID: 34244884 [TBL] [Abstract][Full Text] [Related]
3. Life parameters of Tetranychus urticae (Acari: Tetranychidae) on six common bean cultivars. Najafabadi SS; Shoushtari RV; Zamani AA; Arbabi M; Farazmand H J Econ Entomol; 2014 Apr; 107(2):614-22. PubMed ID: 24772541 [TBL] [Abstract][Full Text] [Related]
4. Resistance of Lima Bean ( de França SM; Silva PRR; Gomes-Neto AV; Gomes RLF; da Silva Melo JW; Breda MO Front Plant Sci; 2018; 9():1466. PubMed ID: 30364341 [TBL] [Abstract][Full Text] [Related]
5. Host plant mediates foraging behavior and mutual interference among adult Stethorus gilvifrons (Coleoptera: Coccinellidae) preying on Tetranychus urticae (Acari: Tetranychidae). Bayoumy MH; Osman MA; Michaud JP Environ Entomol; 2014 Oct; 43(5):1309-18. PubMed ID: 25259694 [TBL] [Abstract][Full Text] [Related]
6. Preference and performance of the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae) on strawberry cultivars. Gong YJ; Chen JC; Zhu L; Cao LJ; Jin GH; Hoffmann AA; Zhong CF; Wang P; Lin G; Wei SJ Exp Appl Acarol; 2018 Oct; 76(2):185-196. PubMed ID: 30251067 [TBL] [Abstract][Full Text] [Related]
7. Endophytic entomopathogenic fungi enhance the growth of Phaseolus vulgaris L. (Fabaceae) and negatively affect the development and reproduction of Tetranychus urticae Koch (Acari: Tetranychidae). Dash CK; Bamisile BS; Keppanan R; Qasim M; Lin Y; Islam SU; Hussain M; Wang L Microb Pathog; 2018 Dec; 125():385-392. PubMed ID: 30290267 [TBL] [Abstract][Full Text] [Related]
8. Herbivore-induced indirect defense across bean cultivars is independent of their degree of direct resistance. Tahmasebi Z; Mohammadi H; Arimura G; Muroi A; Kant MR Exp Appl Acarol; 2014 Jun; 63(2):217-39. PubMed ID: 24531863 [TBL] [Abstract][Full Text] [Related]
9. Sublethal effects of spirodiclofen, abamectin and pyridaben on life-history traits and life-table parameters of two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Saber M; Ahmadi Z; Mahdavinia G Exp Appl Acarol; 2018 May; 75(1):55-67. PubMed ID: 29520527 [TBL] [Abstract][Full Text] [Related]
10. Demographic traits of Tetranychus urticae (Acari: Tetranychidae) on leaf discs and whole leaves. Kavousi A; Chi H; Talebi K; Bandani A; Ashouri A; Naveh VH J Econ Entomol; 2009 Apr; 102(2):595-601. PubMed ID: 19449639 [TBL] [Abstract][Full Text] [Related]
11. Arbuscular mycorrhizal symbiosis increases host plant acceptance and population growth rates of the two-spotted spider mite Tetranychus urticae. Hoffmann D; Vierheilig H; Riegler P; Schausberger P Oecologia; 2009 Jan; 158(4):663-71. PubMed ID: 18949488 [TBL] [Abstract][Full Text] [Related]
12. Soybean (Glycine max L Merr) host-plant defenses and resistance to the two-spotted spider mite (Tetranychus urticae Koch). Scott IM; McDowell T; Renaud JB; Krolikowski SW; Chen L; Dhaubhadel S PLoS One; 2021; 16(10):e0258198. PubMed ID: 34618855 [TBL] [Abstract][Full Text] [Related]
13. Peanut cultivars display susceptibility by triggering outbreaks of Tetranychus ogmophallos (Acari: Tetranychidae). Melville CC; Zampa SF; Savi PJ; Michelotto MD; Andrade DJ Exp Appl Acarol; 2019 Jun; 78(2):295-314. PubMed ID: 31154548 [TBL] [Abstract][Full Text] [Related]
14. Tri-trophic level impact of host plant linamarin and lotaustralin on Tetranychus urticae and its predator Phytoseiulus persimilis. Rojas MG; Morales-Ramos JA J Chem Ecol; 2010 Dec; 36(12):1354-62. PubMed ID: 20953678 [TBL] [Abstract][Full Text] [Related]
15. Overcompensation of herbivore reproduction through hyper-suppression of plant defenses in response to competition. Schimmel BCJ; Ataide LMS; Chafi R; Villarroel CA; Alba JM; Schuurink RC; Kant MR New Phytol; 2017 Jun; 214(4):1688-1701. PubMed ID: 28386959 [TBL] [Abstract][Full Text] [Related]
16. Acaricidal properties of spinosad against Tetranychus urticae and Panonychus ulmi (Acari: Tetranychidae). Villanueva RT; Walgenbach JF J Econ Entomol; 2006 Jun; 99(3):843-9. PubMed ID: 16813320 [TBL] [Abstract][Full Text] [Related]
17. Leaf trichome-mediated predator effects on the distribution of herbivorous mites within a kidney bean plant. Yoshida T; Choh Y Exp Appl Acarol; 2024 Jun; 93(1):155-167. PubMed ID: 38600348 [TBL] [Abstract][Full Text] [Related]
18. Active optical sensor assessment of spider mite damage on greenhouse beans and cotton. Martin DE; Latheef MA Exp Appl Acarol; 2018 Feb; 74(2):147-158. PubMed ID: 29423706 [TBL] [Abstract][Full Text] [Related]
19. Contrasting defence mechanisms against spider mite infestation in cyanogenic and non-cyanogenic legumes. Boter M; Diaz I Plant Sci; 2024 Aug; 345():112118. PubMed ID: 38776983 [TBL] [Abstract][Full Text] [Related]
20. Transcriptomic and proteomic response of Manihot esculenta to Tetranychus urticae infestation at different densities. Yang J; Wang GQ; Zhou Q; Lu W; Ma JQ; Huang JH Exp Appl Acarol; 2019 Jun; 78(2):273-293. PubMed ID: 31168751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]