These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 29524043)
1. Chemokine CXCL3 mediates prostate cancer cells proliferation, migration and gene expression changes in an autocrine/paracrine fashion. Xin H; Cao Y; Shao ML; Zhang W; Zhang CB; Wang JT; Liang LC; Shao WW; Qi YL; Li Y; Zhang ZY; Yang Z; Sun YH; Zhang PX; Jia LL; Wang WQ Int Urol Nephrol; 2018 May; 50(5):861-868. PubMed ID: 29524043 [TBL] [Abstract][Full Text] [Related]
2. Overexpression of CXCL3 can enhance the oncogenic potential of prostate cancer. Gui SL; Teng LC; Wang SQ; Liu S; Lin YL; Zhao XL; Liu L; Sui HY; Yang Y; Liang LC; Wang ML; Li XY; Cao Y; Li FY; Wang WQ Int Urol Nephrol; 2016 May; 48(5):701-9. PubMed ID: 26837773 [TBL] [Abstract][Full Text] [Related]
3. CXCL3 overexpression promotes the tumorigenic potential of uterine cervical cancer cells via the MAPK/ERK pathway. Qi YL; Li Y; Man XX; Sui HY; Zhao XL; Zhang PX; Qu XS; Zhang H; Wang BX; Li J; Qi SF; Jia LL; Luan HY; Zhang CB; Wang WQ J Cell Physiol; 2020 May; 235(5):4756-4765. PubMed ID: 31667838 [TBL] [Abstract][Full Text] [Related]
4. High C-X-C motif chemokine 5 expression is associated with malignant phenotypes of prostate cancer cells via autocrine and paracrine pathways. Qi Y; Zhao W; Li M; Shao M; Wang J; Sui H; Yu H; Shao W; Gui S; Li J; Jia X; Jiang D; Li Y; Zhang P; Wang S; Wang W Int J Oncol; 2018 Jul; 53(1):358-370. PubMed ID: 29749439 [TBL] [Abstract][Full Text] [Related]
5. [In vitro and in vivo inhibitory effect of Ad-ING4 gene on proliferation of human prostate cancer PC-3 cells]. Yang HC; Sheng WH; Xie YF; Miao JC; Wei WX; Yang JC Ai Zheng; 2009 Nov; 28(11):1149-57. PubMed ID: 19895734 [TBL] [Abstract][Full Text] [Related]
6. Elevated expression of CXCL3 in colon cancer promotes malignant behaviors of tumor cells in an ERK-dependent manner. Cheng Y; Yang X; Liang L; Xin H; Dong X; Li W; Li J; Guo X; Li Y; He J; Zhang C; Wang W BMC Cancer; 2023 Nov; 23(1):1162. PubMed ID: 38031087 [TBL] [Abstract][Full Text] [Related]
7. S100A16 promotes cell proliferation and metastasis via AKT and ERK cell signaling pathways in human prostate cancer. Zhu W; Xue Y; Liang C; Zhang R; Zhang Z; Li H; Su D; Liang X; Zhang Y; Huang Q; Liu M; Li L; Li D; Zhao AZ; Liu Y Tumour Biol; 2016 Sep; 37(9):12241-12250. PubMed ID: 27240591 [TBL] [Abstract][Full Text] [Related]
8. Formononetin induces apoptosis in PC-3 prostate cancer cells through enhancing the Bax/Bcl-2 ratios and regulating the p38/Akt pathway. Zhang X; Bi L; Ye Y; Chen J Nutr Cancer; 2014; 66(4):656-61. PubMed ID: 24666255 [TBL] [Abstract][Full Text] [Related]
9. Phosphoglycerate mutase 1 knockdown inhibits prostate cancer cell growth, migration, and invasion. Wen YA; Zhou BW; Lv DJ; Shu FP; Song XL; Huang B; Wang C; Zhao SC Asian J Androl; 2018; 20(2):178-183. PubMed ID: 29271400 [TBL] [Abstract][Full Text] [Related]
10. CXCL14 is an autocrine growth factor for fibroblasts and acts as a multi-modal stimulator of prostate tumor growth. Augsten M; Hägglöf C; Olsson E; Stolz C; Tsagozis P; Levchenko T; Frederick MJ; Borg A; Micke P; Egevad L; Ostman A Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3414-9. PubMed ID: 19218429 [TBL] [Abstract][Full Text] [Related]
12. Asporin promotes pancreatic cancer cell invasion and migration by regulating the epithelial-to-mesenchymal transition (EMT) through both autocrine and paracrine mechanisms. Wang L; Wu H; Wang L; Zhang H; Lu J; Liang Z; Liu T Cancer Lett; 2017 Jul; 398():24-36. PubMed ID: 28400334 [TBL] [Abstract][Full Text] [Related]
13. R115777 (Zarnestra)/Zoledronic acid (Zometa) cooperation on inhibition of prostate cancer proliferation is paralleled by Erk/Akt inactivation and reduced Bcl-2 and bad phosphorylation. Caraglia M; Marra M; Leonetti C; Meo G; D'Alessandro AM; Baldi A; Santini D; Tonini G; Bertieri R; Zupi G; Budillon A; Abbruzzese A J Cell Physiol; 2007 May; 211(2):533-43. PubMed ID: 17192846 [TBL] [Abstract][Full Text] [Related]
14. Effect of curcumin on Bcl-2 and Bax expression in nude mice prostate cancer. Yang J; Ning J; Peng L; He D Int J Clin Exp Pathol; 2015; 8(8):9272-8. PubMed ID: 26464676 [TBL] [Abstract][Full Text] [Related]
15. Blockade of transforming growth factor-beta signaling suppresses progression of androgen-independent human prostate cancer in nude mice. Zhang F; Lee J; Lu S; Pettaway CA; Dong Z Clin Cancer Res; 2005 Jun; 11(12):4512-20. PubMed ID: 15958637 [TBL] [Abstract][Full Text] [Related]
16. [Influence of phosphoprotein associated with glycosphingolipid microdomains 1 on biologic behavior of human prostatic cancer cell line in-vitro]. Yu WJ; Wang YW; You JF; Wang JL; Cui XL; Pei F; Zheng J Zhonghua Bing Li Xue Za Zhi; 2010 Sep; 39(9):615-20. PubMed ID: 21092590 [TBL] [Abstract][Full Text] [Related]
17. siRNA Targeting of the SNCG Gene Inhibits the Growth of Gastric Carcinoma SGC7901 Cells in vitro and in vivo by Downregulating the Phosphorylation of AKT/ERK. Fan C; Liu J; Tian J; Zhang Y; Yan M; Zhu C Cytogenet Genome Res; 2018; 154(4):209-216. PubMed ID: 29902801 [TBL] [Abstract][Full Text] [Related]
18. SIRPB1 promotes prostate cancer cell proliferation via Akt activation. Song Q; Qin S; Pascal LE; Zou C; Wang W; Tong H; Zhang J; Catalona WJ; Dhir R; Morrell M; Balasubramani GK; Lu Y; Wang Z Prostate; 2020 Mar; 80(4):352-364. PubMed ID: 31905248 [TBL] [Abstract][Full Text] [Related]
19. Lemur Tyrosine Kinase-3 Suppresses Growth of Prostate Cancer Via the AKT and MAPK Signaling Pathways. Sun P; Sun X; Zhao W; Ren M; Zhang C; Wang Z; Xu W Cell Physiol Biochem; 2017; 42(6):2582-2592. PubMed ID: 28848113 [TBL] [Abstract][Full Text] [Related]
20. Autocrine Activation of CHRM3 Promotes Prostate Cancer Growth and Castration Resistance via CaM/CaMKK-Mediated Phosphorylation of Akt. Wang N; Yao M; Xu J; Quan Y; Zhang K; Yang R; Gao WQ Clin Cancer Res; 2015 Oct; 21(20):4676-85. PubMed ID: 26071486 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]