BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 29524132)

  • 41. A modular dCas9-based recruitment platform for combinatorial epigenome editing.
    Swain T; Pflueger C; Freytag S; Poppe D; Pflueger J; Nguyen TV; Li JK; Lister R
    Nucleic Acids Res; 2024 Jan; 52(1):474-491. PubMed ID: 38000387
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cancer induction and suppression with transcriptional control and epigenome editing technologies.
    Nakade S; Yamamoto T; Sakuma T
    J Hum Genet; 2018 Feb; 63(2):187-194. PubMed ID: 29215091
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Epigenetic editing: Dissecting chromatin function in context.
    Policarpi C; Dabin J; Hackett JA
    Bioessays; 2021 May; 43(5):e2000316. PubMed ID: 33724509
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Targeted DNA demethylation of the Fgf21 promoter by CRISPR/dCas9-mediated epigenome editing.
    Hanzawa N; Hashimoto K; Yuan X; Kawahori K; Tsujimoto K; Hamaguchi M; Tanaka T; Nagaoka Y; Nishina H; Morita S; Hatada I; Yamada T; Ogawa Y
    Sci Rep; 2020 Mar; 10(1):5181. PubMed ID: 32198422
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Editing of DNA Methylation Patterns Using CRISPR-Based Tools.
    Smith J; Banerjee R; Weeks RJ; Chatterjee A
    Methods Mol Biol; 2022; 2458():63-74. PubMed ID: 35103962
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Harnessing targeted DNA methylation and demethylation using dCas9.
    Pflueger C; Swain T; Lister R
    Essays Biochem; 2019 Dec; 63(6):813-825. PubMed ID: 31724704
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A versatile reporter system for multiplexed screening of effective epigenome editors.
    Roman Azcona MS; Fang Y; Carusillo A; Cathomen T; Mussolino C
    Nat Protoc; 2020 Oct; 15(10):3410-3440. PubMed ID: 32887975
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing.
    Nuñez JK; Chen J; Pommier GC; Cogan JZ; Replogle JM; Adriaens C; Ramadoss GN; Shi Q; Hung KL; Samelson AJ; Pogson AN; Kim JYS; Chung A; Leonetti MD; Chang HY; Kampmann M; Bernstein BE; Hovestadt V; Gilbert LA; Weissman JS
    Cell; 2021 Apr; 184(9):2503-2519.e17. PubMed ID: 33838111
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Targeted in vivo epigenome editing of H3K27me3.
    Fukushima HS; Takeda H; Nakamura R
    Epigenetics Chromatin; 2019 Mar; 12(1):17. PubMed ID: 30871638
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Selective targeting of the oncogenic
    Gao Q; Ouyang W; Kang B; Han X; Xiong Y; Ding R; Li Y; Wang F; Huang L; Chen L; Wang D; Dong X; Zhang Z; Li Y; Ze B; Hou Y; Yang H; Ma Y; Gu Y; Chao CC
    Theranostics; 2020; 10(11):5137-5153. PubMed ID: 32308773
    [No Abstract]   [Full Text] [Related]  

  • 51. Epigenome editing in cancer: Advances and challenges for potential therapeutic options.
    Lee SW; Frankston CM; Kim J
    Int Rev Cell Mol Biol; 2024; 383():191-230. PubMed ID: 38359969
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Epigenetic editing: How cutting-edge targeted epigenetic modification might provide novel avenues for autoimmune disease therapy.
    Jeffries MA
    Clin Immunol; 2018 Nov; 196():49-58. PubMed ID: 29421443
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Epigenome Editing Durability Varies Widely Across Cardiovascular Disease Target Genes.
    Whittaker MN; Testa LC; Quigley A; Jindal I; Cortez-Alvarado SV; Qu P; Yang Y; Alameh MG; Musunuru K; Wang X
    Arterioscler Thromb Vasc Biol; 2023 Oct; 43(10):2075-2077. PubMed ID: 37589141
    [No Abstract]   [Full Text] [Related]  

  • 54. Chromatin context-dependent regulation and epigenetic manipulation of prime editing.
    Li X; Chen W; Martin BK; Calderon D; Lee C; Choi J; Chardon FM; McDiarmid TA; Daza RM; Kim H; Lalanne JB; Nathans JF; Lee DS; Shendure J
    Cell; 2024 May; 187(10):2411-2427.e25. PubMed ID: 38608704
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CRISPR technologies for precise epigenome editing.
    Nakamura M; Gao Y; Dominguez AA; Qi LS
    Nat Cell Biol; 2021 Jan; 23(1):11-22. PubMed ID: 33420494
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rapid and reversible epigenome editing by endogenous chromatin regulators.
    Braun SMG; Kirkland JG; Chory EJ; Husmann D; Calarco JP; Crabtree GR
    Nat Commun; 2017 Sep; 8(1):560. PubMed ID: 28916764
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Harnessing natural DNA modifying activities for editing of the genome and epigenome.
    DeNizio JE; Schutsky EK; Berrios KN; Liu MY; Kohli RM
    Curr Opin Chem Biol; 2018 Aug; 45():10-17. PubMed ID: 29452938
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gene-Targeted DNA Methylation: Towards Long-Lasting Reprogramming of Gene Expression?
    Cortés-Mancera FM; Sarno F; Goubert D; Rots MG
    Adv Exp Med Biol; 2022; 1389():515-533. PubMed ID: 36350521
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Successful generation of epigenetic disease model mice by targeted demethylation of the epigenome.
    Horii T; Morita S; Hino S; Kimura M; Hino Y; Kogo H; Nakao M; Hatada I
    Genome Biol; 2020 Apr; 21(1):77. PubMed ID: 32234052
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Editing DNA Methylation in Mammalian Embryos.
    Yamazaki T; Hatano Y; Taniguchi R; Kobayashi N; Yamagata K
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.