BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 29524132)

  • 61. A Review on CRISPR-mediated Epigenome Editing: A Future Directive for Therapeutic Management of Cancer.
    Chakravarti R; Lenka SK; Gautam A; Singh R; Ravichandiran V; Roy S; Ghosh D
    Curr Drug Targets; 2022; 23(8):836-853. PubMed ID: 35078394
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Delivery of Designer Epigenome Modifiers into Primary Human T Cells.
    Mlambo T; Romito M; Cornu TI; Mussolino C
    Methods Mol Biol; 2018; 1767():189-203. PubMed ID: 29524135
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency.
    Jensen KT; Fløe L; Petersen TS; Huang J; Xu F; Bolund L; Luo Y; Lin L
    FEBS Lett; 2017 Jul; 591(13):1892-1901. PubMed ID: 28580607
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Reversing Mechanoinductive DSP Expression by CRISPR/dCas9-mediated Epigenome Editing.
    Qu J; Zhu L; Zhou Z; Chen P; Liu S; Locy ML; Thannickal VJ; Zhou Y
    Am J Respir Crit Care Med; 2018 Sep; 198(5):599-609. PubMed ID: 29924937
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Precise epigenomic editing with a SunTag-based modular epigenetic toolkit.
    Guhathakurta S; Adams L; Jeong I; Sivakumar A; Cha M; Bernardo Fiadeiro M; Hu HN; Kim YS
    Epigenetics; 2022 Dec; 17(13):2075-2081. PubMed ID: 35920441
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Novel Approaches to Epigenetic Therapies: From Drug Combinations to Epigenetic Editing.
    Majchrzak-Celińska A; Warych A; Szoszkiewicz M
    Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33572577
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Development of Toolboxes for Precision Genome/Epigenome Editing and Imaging of Epigenetics.
    Nomura W
    Chem Rec; 2018 Dec; 18(12):1717-1726. PubMed ID: 30066981
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon.
    Cheng F; Gong L; Zhao D; Yang H; Zhou J; Li M; Xiang H
    J Genet Genomics; 2017 Nov; 44(11):541-548. PubMed ID: 29169919
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Beyond Native Cas9: Manipulating Genomic Information and Function.
    Mitsunobu H; Teramoto J; Nishida K; Kondo A
    Trends Biotechnol; 2017 Oct; 35(10):983-996. PubMed ID: 28739220
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Epigenome editing strategies for the functional annotation of CTCF insulators.
    Tarjan DR; Flavahan WA; Bernstein BE
    Nat Commun; 2019 Sep; 10(1):4258. PubMed ID: 31534142
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Targeting epigenetic aberrations of sarcoma in CRISPR era.
    Tanaka M; Nakamura T
    Genes Chromosomes Cancer; 2023 Sep; 62(9):510-525. PubMed ID: 36967299
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system.
    Garcia-Bloj B; Moses C; Sgro A; Plani-Lam J; Arooj M; Duffy C; Thiruvengadam S; Sorolla A; Rashwan R; Mancera RL; Leisewitz A; Swift-Scanlan T; Corvalan AH; Blancafort P
    Oncotarget; 2016 Sep; 7(37):60535-60554. PubMed ID: 27528034
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Epigenome editing: targeted manipulation of epigenetic modifications in plants.
    Shin H; Choi WL; Lim JY; Huh JH
    Genes Genomics; 2022 Mar; 44(3):307-315. PubMed ID: 35000141
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Chemically Controlled Epigenome Editing through an Inducible dCas9 System.
    Chen T; Gao D; Zhang R; Zeng G; Yan H; Lim E; Liang FS
    J Am Chem Soc; 2017 Aug; 139(33):11337-11340. PubMed ID: 28787145
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting.
    Chen F; Ding X; Feng Y; Seebeck T; Jiang Y; Davis GD
    Nat Commun; 2017 Apr; 8():14958. PubMed ID: 28387220
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Genome and Epigenome Editing in Mechanistic Studies of Human Aging and Aging-Related Disease.
    Lau CH; Suh Y
    Gerontology; 2017; 63(2):103-117. PubMed ID: 27974723
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The Impact of Chromatin Dynamics on Cas9-Mediated Genome Editing in Human Cells.
    Daer RM; Cutts JP; Brafman DA; Haynes KA
    ACS Synth Biol; 2017 Mar; 6(3):428-438. PubMed ID: 27783893
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Web-based design and analysis tools for CRISPR base editing.
    Hwang GH; Park J; Lim K; Kim S; Yu J; Yu E; Kim ST; Eils R; Kim JS; Bae S
    BMC Bioinformatics; 2018 Dec; 19(1):542. PubMed ID: 30587106
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment.
    Chen Y; Luo X; Kang R; Cui K; Ou J; Zhang X; Liang P
    J Genet Genomics; 2024 Feb; 51(2):159-183. PubMed ID: 37516348
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Transgenerationally Transmitted DNA Demethylation of a Spontaneous Epialleles Using CRISPR/dCas9-TET1cd Targeted Epigenetic Editing in Arabidopsis.
    Wang M; He L; Chen B; Wang Y; Wang L; Zhou W; Zhang T; Cao L; Zhang P; Xie L; Zhang Q
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.