These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 29524172)

  • 21. Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes.
    Levin L; Papinutti L; Forchiassin F
    Bioresour Technol; 2004 Sep; 94(2):169-76. PubMed ID: 15158509
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effective bioremediation of pulp and paper mill wastewater using Bacillus cereus as a possible kraft lignin-degrading bacterium.
    Kumar R; Singh A; Maurya A; Yadav P; Yadav A; Chowdhary P; Raj A
    Bioresour Technol; 2022 May; 352():127076. PubMed ID: 35351569
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphate starvation-independent 2-aminoethylphosphonic acid biodegradation in a newly isolated strain of Pseudomonas putida, NG2.
    Ternan NG; Quinn JP
    Syst Appl Microbiol; 1998 Aug; 21(3):346-52. PubMed ID: 9841125
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Syntrophic co-culture of Bacillus subtilis and Klebsiella pneumonia for degradation of kraft lignin discharged from rayon grade pulp industry.
    Yadav S; Chandra R
    J Environ Sci (China); 2015 Jul; 33():229-38. PubMed ID: 26141897
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ligninolytic Enzymes of Endospore-Forming Bacillus aryabhattai BA03.
    Paz A; Costa-Trigo I; Oliveira RPS; Domínguez JM
    Curr Microbiol; 2020 May; 77(5):702-709. PubMed ID: 31894375
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Complete genome reveals genetic repertoire and potential metabolic strategies involved in lignin degradation by environmental ligninolytic Klebsiella variicola P1CD1.
    Dos Santos Melo-Nascimento AO; Mota Moitinho Sant Anna B; Gonçalves CC; Santos G; Noronha E; Parachin N; de Abreu Roque MR; Bruce T
    PLoS One; 2020; 15(12):e0243739. PubMed ID: 33351813
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation of bacterial strains able to metabolize lignin from screening of environmental samples.
    Taylor CR; Hardiman EM; Ahmad M; Sainsbury PD; Norris PR; Bugg TD
    J Appl Microbiol; 2012 Sep; 113(3):521-30. PubMed ID: 22642383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cooperation between ligninolytic enzymes produced by superior mixed flora.
    Wang HL; Li ZY; Guo WY; Wang ZY; Pan F
    J Environ Sci (China); 2005; 17(4):620-2. PubMed ID: 16158591
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Degradation and decolourization potential of ligninolytic enzyme producing Bacillus paramycoides BL2 and Micrococcus luteus BL3 for pulp paper industrial effluent and its toxicity evaluation.
    Verma P; Tripathi S; Yadav S; Chandra R
    Arch Microbiol; 2022 Sep; 204(10):642. PubMed ID: 36161364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lignin catabolic pathways reveal unique characteristics of dye-decolorizing peroxidases in Pseudomonas putida.
    Lin L; Wang X; Cao L; Xu M
    Environ Microbiol; 2019 May; 21(5):1847-1863. PubMed ID: 30882973
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of Deconica castanella ligninolytic enzymatic system in the degradation of hexachlorobenzene in soil.
    Neto SLM; Coelho GD; Ballaminut N; Matheus DR; Thomaz DV; Machado KMG
    Biotechnol Appl Biochem; 2022 Dec; 69(6):2437-2444. PubMed ID: 34837656
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bisphenol A degradation in water by ligninolytic enzymes.
    Gassara F; Brar SK; Verma M; Tyagi RD
    Chemosphere; 2013 Aug; 92(10):1356-60. PubMed ID: 23668961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lignin peroxidase functionalities and prospective applications.
    Falade AO; Nwodo UU; Iweriebor BC; Green E; Mabinya LV; Okoh AI
    Microbiologyopen; 2017 Feb; 6(1):. PubMed ID: 27605423
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of olive oil mill wastewater on extracellular ligninolytic enzymes produced by Phanerochaete flavido-alba.
    Ruiz JC; de la Rubia T; Pérez J; Martínez Lopez J
    FEMS Microbiol Lett; 2002 Jun; 212(1):41-5. PubMed ID: 12076785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conversion of lignin model compounds by Pseudomonas putida KT2440 and isolates from compost.
    Ravi K; García-Hidalgo J; Gorwa-Grauslund MF; Lidén G
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):5059-5070. PubMed ID: 28299400
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Periplasmic expression of Pseudomonas fluorescens peroxidase Dyp1B and site-directed mutant Dyp1B enzymes enhances polymeric lignin degradation activity in Pseudomonas putida KT2440.
    Ehibhatiomhan AO; Pour RR; Farnaud S; Bugg TDH; Mendel-Williams S
    Enzyme Microb Technol; 2023 Jan; 162():110147. PubMed ID: 36335860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Degradative capability of Pseudomonas putida on acetonitrile.
    Chapatwala KD; Babu GR; Dudley C; Williams R; Aremu K
    Appl Biochem Biotechnol; 1993; 39-40():655-66. PubMed ID: 8323268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradation of 2,4,6-tribromophenol by Ochrobactrum sp. strain TB01.
    Yamada T; Takahama Y; Yamada Y
    Biosci Biotechnol Biochem; 2008 May; 72(5):1264-71. PubMed ID: 18460800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced removal of PAHs by Peniophora incarnata and ascertainment of its novel ligninolytic enzyme genes.
    Lee H; Jang Y; Lee YM; Lee H; Kim GH; Kim JJ
    J Environ Manage; 2015 Dec; 164():10-8. PubMed ID: 26342262
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodegradation of kraft lignin by a newly isolated anaerobic bacterial strain, Acetoanaerobium sp. WJDL-Y2.
    Duan J; Huo X; Du WJ; Liang JD; Wang DQ; Yang SC
    Lett Appl Microbiol; 2016 Jan; 62(1):55-62. PubMed ID: 26465801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.