These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2952438)

  • 41. Serum CK, calcium, magnesium, and oxidative phosphorylation in mdx mouse muscular dystrophy.
    Glesby MJ; Rosenmann E; Nylen EG; Wrogemann K
    Muscle Nerve; 1988 Aug; 11(8):852-6. PubMed ID: 3173410
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rapid kinetics of calcium ion transport and ATPase activity in the sarcoplasmic reticulum of dystrophic muscle.
    Verjovski-Almeida S; Inesi G
    Biochim Biophys Acta; 1979 Nov; 558(1):119-25. PubMed ID: 159072
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Accelerated protein turnover in the skeletal muscle of dystrophic mice.
    Mizobuchi M; Inoue R; Miyaka M; Kakimoto Y
    Biochim Biophys Acta; 1985 Nov; 843(1-2):78-82. PubMed ID: 3933571
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of denervation on adenine nucleotides in skeletal muscle from normal and dystrophic mice.
    Clow DW; Boegman RJ
    Exp Neurol; 1987 May; 96(2):334-43. PubMed ID: 3569459
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of the effects of fluoride on the calcium pumps of cardiac and fast skeletal muscle sarcoplasmic reticulum: evidence for tissue-specific qualitative difference in calcium-induced pump conformation.
    Hawkins C; Xu A; Narayanan N
    Biochim Biophys Acta; 1994 May; 1191(2):231-43. PubMed ID: 8172909
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum Ca-ATPase, on skeletal muscles from normal and mdx mice.
    Divet A; Lompré AM; Huchet-Cadiou C
    Acta Physiol Scand; 2005 Jul; 184(3):173-86. PubMed ID: 15954985
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Defect in regulation of membrane transport of monosaccharides in dystrophic muscle.
    Elbrink J
    Can J Physiol Pharmacol; 1979 Jul; 57(7):695-701. PubMed ID: 487277
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Extraocular muscle in merosin-deficient muscular dystrophy: cation homeostasis is maintained but is not mechanistic in muscle sparing.
    Porter JD; Karathanasis P
    Cell Tissue Res; 1998 Jun; 292(3):495-501. PubMed ID: 9582406
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein profiles of sarcoplasmic reticulum from normal and dystrophic mouse muscle.
    Butcher LA; Tomkins JK
    J Neurol Sci; 1986 Feb; 72(2-3):159-69. PubMed ID: 2940342
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of calmodulin on the active calcium-ion transport and (Ca2+ + Mg2+)-dependent ATPase in microsomal fractions of smooth muscle compared with that in erythrocytes and cardiac muscle.
    Wuytack F; De Schutter G; Casteels R
    Biochem J; 1980 Sep; 190(3):827-31. PubMed ID: 6451219
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice.
    Turner PR; Westwood T; Regen CM; Steinhardt RA
    Nature; 1988 Oct; 335(6192):735-8. PubMed ID: 3173492
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Drastic reduction of calsequestrin-like proteins and impaired calcium binding in dystrophic mdx muscle.
    Culligan K; Banville N; Dowling P; Ohlendieck K
    J Appl Physiol (1985); 2002 Feb; 92(2):435-45. PubMed ID: 11796649
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of intracellular free calcium in normal and dystrophic mouse cerebellar neurons.
    Hopf FW; Steinhardt RA
    Brain Res; 1992 Apr; 578(1-2):49-54. PubMed ID: 1511288
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ca2+ levels in myotubes grown from the skeletal muscle of dystrophic (mdx) and normal mice.
    Bakker AJ; Head SI; Williams DA; Stephenson DG
    J Physiol; 1993 Jan; 460():1-13. PubMed ID: 8487190
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ouabain binding sites in skeletal muscle from normal and dystrophic mice.
    Bray GM; Wilcox W; Aguayo AJ
    J Neurol Sci; 1977 Nov; 34(2):149-56. PubMed ID: 144788
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biochemical changes in progressive muscular dystrophy. XIV. Skeletal muscle myosin mRNA translatability in dystrophic mice.
    Srivastava US; Sugden EA; Majumdar PK; Thakur ML; Bhatnagar GM
    Biochem Cell Biol; 1987 Sep; 65(9):833-41. PubMed ID: 2449899
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biochemical changes in progressive muscular dystrophy. XI. Cyclic nucleotides in the skeletal and cardiac muscle of normal and dystrophic mice.
    Srivastava U; Sebag M; Thakur M
    Can J Physiol Pharmacol; 1981 Apr; 59(4):329-34. PubMed ID: 6263431
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inhibitory action of bepridil (CERM-1978) on calcium binding to cardiac sarcolemma of guinea pig.
    Pang DC; Sperelakis N
    Biochem Pharmacol; 1981 Aug; 30(16):2356-8. PubMed ID: 6975102
    [No Abstract]   [Full Text] [Related]  

  • 59. Calmodulin content and Ca-activated protease activity in dystrophic hamster muscles.
    Klamut HJ; Lin CH; Strickland KP
    Muscle Nerve; 1983; 6(6):436-41. PubMed ID: 6312308
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Effect of thyroxine on skeletal muscles in hereditary myodystrophia].
    Khamitov KhS; Bogdanov EI
    Biull Eksp Biol Med; 1986 May; 101(5):540-3. PubMed ID: 2939889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.