These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 29524440)

  • 21. LPC cepstral distortion measure for protein sequence comparison.
    Pham TD
    IEEE Trans Nanobioscience; 2006 Jun; 5(2):83-8. PubMed ID: 16805103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Similarity analysis of protein sequences based on the normalized relative-entropy.
    Li C; Wang J; Zhan Y; Wang J
    Comb Chem High Throughput Screen; 2008 Jul; 11(6):477-81. PubMed ID: 18673275
    [TBL] [Abstract][Full Text] [Related]  

  • 23. LZW-Kernel: fast kernel utilizing variable length code blocks from LZW compressors for protein sequence classification.
    Filatov G; Bauwens B; Kertész-Farkas A
    Bioinformatics; 2018 Oct; 34(19):3281-3288. PubMed ID: 29741583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measuring Similarity among Protein Sequences Using a New Descriptor.
    Abo-Elkhier MM; Abd Elwahaab MA; Abo El Maaty MI
    Biomed Res Int; 2019; 2019():2796971. PubMed ID: 31886192
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insights from analyses of low complexity regions with canonical methods for protein sequence comparison.
    Jarnot P; Ziemska-Legiecka J; Grynberg M; Gruca A
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35914952
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Algorithm, applications and evaluation for protein comparison by Ramanujan Fourier transform.
    Zhao J; Wang J; Hua W; Ouyang P
    Mol Cell Probes; 2015 Dec; 29(6):396-407. PubMed ID: 26325081
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predict protein structural class for low-similarity sequences by evolutionary difference information into the general form of Chou's pseudo amino acid composition.
    Zhang L; Zhao X; Kong L
    J Theor Biol; 2014 Aug; 355():105-10. PubMed ID: 24735902
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new method to analyze protein sequence similarity using Dynamic Time Warping.
    Hou W; Pan Q; Peng Q; He M
    Genomics; 2017 Mar; 109(2):123-130. PubMed ID: 27974244
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new similarity measure among protein sequences.
    Wu KP; Lin HN; Sung TY; Hsu WL
    Proc IEEE Comput Soc Bioinform Conf; 2003; 2():347-52. PubMed ID: 16452810
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein Sequence Comparison and DNA-binding Protein Identification with Generalized PseAAC and Graphical Representation.
    Li C; Zhao J; Wang C; Yao Y
    Comb Chem High Throughput Screen; 2018; 21(2):100-110. PubMed ID: 29380690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sirius PSB: a generic system for analysis of biological sequences.
    Koh CH; Lin S; Jedd G; Wong L
    J Bioinform Comput Biol; 2009 Dec; 7(6):973-90. PubMed ID: 20014474
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of the probabilities for evolutionary structural changes in protein folds.
    Viksna J; Gilbert D
    Bioinformatics; 2007 Apr; 23(7):832-41. PubMed ID: 17282999
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reducing Alignment Time Complexity of Ultra-Large Sets of Sequences.
    Rubio-Largo Á; Vanneschi L; Castelli M; Vega-Rodríguez MA
    J Comput Biol; 2017 Nov; 24(11):1144-1154. PubMed ID: 28686466
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phylogenetic analysis based on spectral methods.
    Abeysundera M; Field C; Gu H
    Mol Biol Evol; 2012 Feb; 29(2):579-97. PubMed ID: 21880577
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Similarity/Dissimilarity analysis of protein sequences based on a new spectrum-like graphical representation.
    Yao Y; Yan S; Xu H; Han J; Nan X; He PA; Dai Q
    Evol Bioinform Online; 2014; 10():87-96. PubMed ID: 25002811
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Similarity/dissimilarity calculation methods of DNA sequences: A survey.
    Jin X; Jiang Q; Chen Y; Lee SJ; Nie R; Yao S; Zhou D; He K
    J Mol Graph Model; 2017 Sep; 76():342-355. PubMed ID: 28763687
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Soft Ngram Representation and Modeling for Protein Remote Homology Detection.
    Lovato P; Cristani M; Bicego M
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(6):1482-1488. PubMed ID: 27483459
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GLProbs: Aligning Multiple Sequences Adaptively.
    Ye Y; Cheung DW; Wang Y; Yiu SM; Zhan Q; Lam TW; Ting HF
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(1):67-78. PubMed ID: 26357079
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graphical representation of proteins as four-color maps and their numerical characterization.
    Randić M; Mehulić K; Vukicević D; Pisanski T; Vikić-Topić D; Plavsić D
    J Mol Graph Model; 2009 Jan; 27(5):637-41. PubMed ID: 19081277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.