These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
404 related articles for article (PubMed ID: 29524686)
1. Characterized hydrochar of algal biomass for producing solid fuel through hydrothermal carbonization. Park KY; Lee K; Kim D Bioresour Technol; 2018 Jun; 258():119-124. PubMed ID: 29524686 [TBL] [Abstract][Full Text] [Related]
2. Hydrothermal carbonization of yard waste for solid bio-fuel production: Study on combustion kinetic, energy properties, grindability and flowability of hydrochar. Sharma HB; Panigrahi S; Dubey BK Waste Manag; 2019 May; 91():108-119. PubMed ID: 31203932 [TBL] [Abstract][Full Text] [Related]
3. Synergistic effect of hydrothermal co-carbonization of sewage sludge with fruit and agricultural wastes on hydrochar fuel quality and combustion behavior. He C; Zhang Z; Ge C; Liu W; Tang Y; Zhuang X; Qiu R Waste Manag; 2019 Dec; 100():171-181. PubMed ID: 31541922 [TBL] [Abstract][Full Text] [Related]
4. Hydrothermal carbonization of tobacco stalk for fuel application. Cai J; Li B; Chen C; Wang J; Zhao M; Zhang K Bioresour Technol; 2016 Nov; 220():305-311. PubMed ID: 27589825 [TBL] [Abstract][Full Text] [Related]
5. Conversion of heavy metal-containing biowaste from phytoremediation site to value-added solid fuel through hydrothermal carbonization. Lee J; Park KY Environ Pollut; 2021 Jan; 269():116127. PubMed ID: 33279266 [TBL] [Abstract][Full Text] [Related]
6. Hydrothermal carbonization of waste from leather processing and feasibility of produced hydrochar as an alternative solid fuel. Lee J; Hong J; Jang D; Park KY J Environ Manage; 2019 Oct; 247():115-120. PubMed ID: 31234046 [TBL] [Abstract][Full Text] [Related]
7. Co-hydrothermal carbonization of lignocellulosic biomass and swine manure: Hydrochar properties and heavy metal transformation behavior. Lang Q; Guo Y; Zheng Q; Liu Z; Gai C Bioresour Technol; 2018 Oct; 266():242-248. PubMed ID: 29982044 [TBL] [Abstract][Full Text] [Related]
8. A review on nitrogen transformation in hydrochar during hydrothermal carbonization of biomass containing nitrogen. Leng L; Yang L; Leng S; Zhang W; Zhou Y; Peng H; Li H; Hu Y; Jiang S; Li H Sci Total Environ; 2021 Feb; 756():143679. PubMed ID: 33307499 [TBL] [Abstract][Full Text] [Related]
10. Influences of feedstock type and process variables on hydrochar properties. Toptas Tag A; Duman G; Yanik J Bioresour Technol; 2018 Feb; 250():337-344. PubMed ID: 29182991 [TBL] [Abstract][Full Text] [Related]
11. The properties and combustion behaviors of hydrochars derived from co-hydrothermal carbonization of sewage sludge and food waste. Zheng C; Ma X; Yao Z; Chen X Bioresour Technol; 2019 Aug; 285():121347. PubMed ID: 31004948 [TBL] [Abstract][Full Text] [Related]
12. Hydrothermal carbonization of Chinese fan palm. Yao Z; Ma X Bioresour Technol; 2019 Jun; 282():28-36. PubMed ID: 30851571 [TBL] [Abstract][Full Text] [Related]
13. Conversion of biomass waste to solid fuel via hydrothermal co-carbonization of distillers grains and sewage sludge. Zhao J; Liu C; Hou T; Lei Z; Yuan T; Shimizu K; Zhang Z Bioresour Technol; 2022 Feb; 345():126545. PubMed ID: 34902485 [TBL] [Abstract][Full Text] [Related]
14. Co-hydrothermal carbonization of lignocellulosic biomass and waste polyvinyl chloride for high-quality solid fuel production: Hydrochar properties and its combustion and pyrolysis behaviors. Zhang X; Zhang L; Li A Bioresour Technol; 2019 Dec; 294():122113. PubMed ID: 31542495 [TBL] [Abstract][Full Text] [Related]
15. Aqueous phase recirculation during hydrothermal carbonization of microalgae and soybean straw: A comparison study. Leng S; Li W; Han C; Chen L; Chen J; Fan L; Lu Q; Li J; Leng L; Zhou W Bioresour Technol; 2020 Feb; 298():122502. PubMed ID: 31830659 [TBL] [Abstract][Full Text] [Related]
16. Co-hydrothermal carbonization of food waste-woody biomass blend towards biofuel pellets production. Wang T; Zhai Y; Li H; Zhu Y; Li S; Peng C; Wang B; Wang Z; Xi Y; Wang S; Li C Bioresour Technol; 2018 Nov; 267():371-377. PubMed ID: 30031275 [TBL] [Abstract][Full Text] [Related]
17. Carbonization temperature and feedstock type interactively affect chemical, fuel, and surface properties of hydrochars. Nzediegwu C; Naeth MA; Chang SX Bioresour Technol; 2021 Jun; 330():124976. PubMed ID: 33743274 [TBL] [Abstract][Full Text] [Related]
18. Upgradation of chemical, fuel, thermal, and structural properties of rice husk through microwave-assisted hydrothermal carbonization. Nizamuddin S; Siddiqui MTH; Baloch HA; Mubarak NM; Griffin G; Madapusi S; Tanksale A Environ Sci Pollut Res Int; 2018 Jun; 25(18):17529-17539. PubMed ID: 29663294 [TBL] [Abstract][Full Text] [Related]
19. Fuel properties and combustion kinetics of hydrochar prepared by hydrothermal carbonization of bamboo. Yang W; Wang H; Zhang M; Zhu J; Zhou J; Wu S Bioresour Technol; 2016 Apr; 205():199-204. PubMed ID: 26826960 [TBL] [Abstract][Full Text] [Related]
20. Hydrochar production from defective coffee beans by hydrothermal carbonization. Santos Santana M; Pereira Alves R; da Silva Borges WM; Francisquini E; Guerreiro MC Bioresour Technol; 2020 Mar; 300():122653. PubMed ID: 31901773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]