BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 29524875)

  • 1. The simultaneous capture of mercury and fine particles by hybrid filter with powder activated carbon injection.
    Jang HN; Back SK; Sung JH; Kang YS; Jurng J; Seo YC
    Environ Pollut; 2018 Jun; 237():531-540. PubMed ID: 29524875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of powdered activated carbon coating to fabrics in a hybrid filter to enhance mercury removal.
    Sung JH; Back SK; Lee ES; Jang HN; Seo YC; Kang YS; Lee MH
    J Environ Sci (China); 2019 Jun; 80():58-65. PubMed ID: 30952353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mobility and contamination assessment of mercury in coal fly ash, atmospheric deposition, and soil collected from Tianjin, China.
    Wei Z; Wu G; Su R; Li C; Liang P
    Environ Toxicol Chem; 2011 Sep; 30(9):1997-2003. PubMed ID: 21713969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speciation and mass-balance of mercury from pulverized coal fired power plants burning western Canadian subbituminous coals.
    Goodarzi F
    J Environ Monit; 2004 Oct; 6(10):792-8. PubMed ID: 15480492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mercury speciation and emissions from coal combustion in Guiyang, Southwest China.
    Tang S; Feng X; Qiu J; Yin G; Yang Z
    Environ Res; 2007 Oct; 105(2):175-82. PubMed ID: 17517388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal.
    Cao Y; Gao Z; Zhu J; Wang Q; Huang Y; Chiu C; Parker B; Chu P; Pant WP
    Environ Sci Technol; 2008 Jan; 42(1):256-61. PubMed ID: 18350905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiative forcing associated with particulate carbon emissions resulting from the use of mercury control technology.
    Lin G; Penner JE; Clack HL
    Environ Sci Technol; 2014 Sep; 48(17):10519-23. PubMed ID: 25093939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regenerable sorbents for mercury capture in simulated coal combustion flue gas.
    Rodríguez-Pérez J; López-Antón MA; Díaz-Somoano M; García R; Martínez-Tarazona MR
    J Hazard Mater; 2013 Sep; 260():869-77. PubMed ID: 23876255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorbents for capturing mercury in coal-fired boiler flue gas.
    Yang H; Xu Z; Fan M; Bland AE; Judkins RR
    J Hazard Mater; 2007 Jul; 146(1-2):1-11. PubMed ID: 17544578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury.
    Zhao S; Duan Y; Chen L; Li Y; Yao T; Liu S; Liu M; Lu J
    Environ Pollut; 2017 Oct; 229():863-870. PubMed ID: 28779897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of speciation sampler and PC-BOSS fine particulate matter organic material results obtained in Lindon, Utah, during winter 2001-2002.
    Carter C; Eatough NL; Eatough DJ; Olson N; Long RW
    J Air Waste Manag Assoc; 2008 Jan; 58(1):65-71. PubMed ID: 18236795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury speciation in coal-fired power plant plumes observed at three surface sites in the southeastern U.S.
    Edgerton ES; Hartsell BE; Jansen JJ
    Environ Sci Technol; 2006 Aug; 40(15):4563-70. PubMed ID: 16913107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation of mercury speciation through the SCR system in power plants.
    Yang HM; Pan WP
    J Environ Sci (China); 2007; 19(2):181-4. PubMed ID: 17915726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury speciation and distribution in a 660-megawatt utility boiler in Taiwan firing bituminous coals.
    Hsi HC; Lee HH; Hwang JF; Chen W
    J Air Waste Manag Assoc; 2010 May; 60(5):514-22. PubMed ID: 20480850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of fly ash composition on mercury speciation in simulated flue gas.
    Bhardwaj R; Chen X; Vidic RD
    J Air Waste Manag Assoc; 2009 Nov; 59(11):1331-8. PubMed ID: 19947114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elemental mercury oxidation in an electrostatic precipitator enhanced with in situ soft X-ray irradiation.
    Jing H; Wang X; Wang WN; Biswas P
    J Air Waste Manag Assoc; 2015 Apr; 65(4):455-65. PubMed ID: 25947215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of mercury capture by activated carbon injection in incinerator flue gas. 2. Fabric filter removal.
    Scala F
    Environ Sci Technol; 2001 Nov; 35(21):4373-8. PubMed ID: 11718360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the shutdown of a large coal-fired power plant on ambient mercury species.
    Wang Y; Huang J; Hopke PK; Rattigan OV; Chalupa DC; Utell MJ; Holsen TM
    Chemosphere; 2013 Jul; 92(4):360-7. PubMed ID: 23422172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of pressure drop and flow redistribution on modeling mercury control using sorbent injection in baghouse filters.
    Flora JR; Hargis RA; O'Dowd WJ; Karash A; Pennline HW; Vidic RD
    J Air Waste Manag Assoc; 2006 Mar; 56(3):343-9. PubMed ID: 16573197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced elemental mercury removal from coal-fired flue gas by sulfur-chlorine compounds.
    Yan NQ; Qu Z; Chi Y; Qiao SH; Dod RL; Chang SG; Miller C
    Environ Sci Technol; 2009 Jul; 43(14):5410-5. PubMed ID: 19708374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.